
High Energy Physics

Ananda Dasgupta
Lecture notes taken by Anindya Sengupta

Department of Physical Sciences
Indian Institute of Science Education and Research, Kolkata

April 27, 2016

1



I have tried to follow ADG’s lectures as closely as possible. In a few places, I
have taken the freedom to elaborate some concepts spending more words than
ADG did in the class. I was absent in a few lectures. Sohitri has kindly
provided me with excellent handwritten notes for those lectures. Thank you
Sohitri.

Please notify me of typographical/conceptual errors if you find any. You can
contact me at tuhin039@gmail.com and/or +91-9836874337.

– Anindya

2



1 Week 1

1.1 Lecture 1 : January 4, 2016

High Energy Physics (HEP) is the study of elementary particles and their in-
teractions. Elementary particles are those which are made of no sub-particles.
Interactions of particles could be of several kinds : particle decay, scattering,
pair creation or pair annihilation etc. We shall be studying the kinematics of
decay and scattering processes in the first few lectures.

Suppose that a particle may decay in several ways, so that its different decay
processes give birth to different species of product particles. By specifying the
identities of the decay products we can be sure which one of these processes
we are talking abut. A specific decay process of a particle, identified by the
products, is called a decay channel. In a channel, momenta of the product
particles may vary.

Two Body Decay :

Let’s denote the identities of the particles by the letter a with numerical sub-
scripts as and when necessary. A channel of a two body decay would be

a(p)→ a1(p1) + a2(p2) (1)

The momenta of the particles are given in the brackets. Conservation of 4-
momentum gives

p = p1 + p2 (2)

Taking a Lorentz invariant square on both sides gives

p2 = p2
1 + p2

2 + 2p1.p2

⇒ m2 = m2
1 +m2

2 + 2 (E1E2 − ~p1.~p2) (3)

We can now go to the rest frame of the mother particle in which

~p = 0 = ~p1 + ~p2 (4)

Let,
~p1 = −~p2 = ~P (5)

⇒ E1E2 − ~p1.~p2 =
1

2

(
m2 −m2

1 −m2
2

)
⇒
√∣∣~P ∣∣2 +m2

1.

√∣∣~P ∣∣2 +m2
2 +

∣∣~P ∣∣2 =
1

2

(
m2 −m2

1 −m2
2

)
Squaring both sides, and a bit of algebra, yield

E2
1 =

(
m2 +m2

1 −m2
2

2m

)2
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Taking the positive1 square root, we find

E1 =
1

2m

(
m2 +m2

1 −m2
2

)
(6)

Using m = E = E1 + E2(or by simply interchanging the subscripts 1 and 2),
one finds,

E2 =
1

2m

(
m2 +m2

2 −m2
1

)
(7)

So we find that, given the masses of the particles involved in a two body decay,
the total energy is shared in a precise fashion between the daughter particles.
If we perform a decay experiment and keep measuring the energy of one of the
daughter particles, say a1, we shall see that almost all of them have the energy
E1, thus resulting in a very highly peaked graph.

The small spread originates from what is known as the Doppler broaden-
ing. This occurs because of the thermal motion of the mother particle a.

If we are not in the rest frame of a, we can do one of two things – employ
p = p1 + p2 in the new frame and solve a complicated quadratic equation to
get E1,2; or we can solve the problem in the rest frame of a and then boost the
solution to go back to the new frame. If we are following the first approach, the
calculations will be a little easier if we square2 p− p1 = p2.

(p− p1)
2

= p2
2 ⇒ m2 +m2

1 − 2 (EE1 − ~p.~p1) = m2
2 (8)

When a1 is a massless particle, say, a neutrino, this formula gives

m2 − 2 (EE1 − |~p|E1 cos θ) = m2
2 (9)

where θ is the angle between ~p and the direction of motion of the initial particle.
As an example, consider α decay :

X → Y + α (10)

1

E = E1 + E2

, where E, E1, E2are all positive numbers. E = m in the rest frame of a. Now, E2 ≥ m2 ⇒
m ≥ m2. It follows, m2 +m2

1 −m2
2 ≥ 0.

2In a large variety of problems in special relativity, one can simplify the calculations by
cleverly choosing to compute some Lorentz invariant squares. However, sometimes it is better
to take the brute force approach rather than split one’s hair looking for a nice Lorentz scalar.
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In the rest frame of the mother particle X, rest energy of X will equal the sum
of the rest energies and kinetic energies of the product particles. We define a
quantity, called the Q-factor of the process :

Q = mX −mY −mα (11)

Q-factor measures the excess energy in X compared to the combined rest mass
of Y and α⇒ the energy available for “motion of Y and α”.

If the Na1 vs. E1 curve of a 2-body decay has multiple peaks, one argues
that the product particles appear via intermediate steps : X → Y ∗ → Y . In
such cases, α decay is usually accompanied by γ-decay.

In the beginning, it was assumed that β-decay was a 2-body decay. However,
the experiment showed a graph like this :

This was contradictory to the assumption. Many propositions came forward
in order to explain it, some as outlandish as to demand violation of 4-momentum
conservation for β-decays. Pauli proposed (1930) that β-decay is not a 2-body
decay and proposed the existence of a yet to be discovered particle – the anti-
neutrino.

X → Y + e+ ν̄e (12)

We will see soon that the sharing of energy between three daughter particles can-
not exactly be fixed and that contributes to the shape of the graph above. An-
tineutrino was experimentally detected3 for the first time 26 years after Fermi’s
prediction!

Three body decay :

In case of two body decays, momentum conservation in the rest frame of the
mother particle imply that the 3-momenta of the two daughters have to be ex-
actly equal and opposite to each other. However, if we have three daughter
particles, then in the rest frame of the mother particle three 3-momentum vec-
tors will have to add up to zero. ⇒ The 3-momenta of the daughters will have
to form a triangle. A triangle can be constructed out of three independent pa-
rameters – lengths of two sides and the angle between them, for example. One
of these will be taken away by the equation for energy

(
p0
)

conservation. We
are still left with two independent parameters which can be varied, as a result

3In 1956, by Cowan and Reines.
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of which the energy distribution between the daughter particles is not as boring
as in the two body case.

a (p)→ a1 (p1) + a2 (p2) + a3 (p3) (13)

In the rest frame of a,
~p = 0 = ~p1 + ~p2 + ~p3 (14)

With this much information, we cannot solve exactly for E1,2,3, but we can find
out the allowed ranges of energies of the daughter particles. Let’s start with a3.

(E3)min = m3 (15)

For a two body decay in the rest frame of the mother particle, none of the
daughter particles can be at rest4. But this can happen in a three body decay
– a3 can be at rest (in the rest frame of a), while the 3-momenta of a2 and
a3 are equal and opposite to each other. In such a case a3 will achieve the
minimum energy stated above. E3 will be maximum when |~p3| is maximum.
Now, ~p3 = − (~p1 + ~p2) implies that |~p3| is maximum when ~p1 and ~p2 point in
the same direction. In such a case,

(E3)max =
m2 +m2

3 − (m1 +m2)
2

2m
(16)

Derive this result yourself as an exercise. If there were a two body decay in
which a daughter particle of mass m3 goes in one direction and another of
mass (m1 +m2) goes in the opposite direction, obviously with momenta of
equal magnitude, then the daughter particle with mass m3 would come out
with exactly the amount of energy stated in equation (16).

In special relativity, kinetic energy is defined as T ≡ E−m, that is the excess
in total energy over the mass. For the beta decay considered in (12), we use the
approximation that the masses of X and Y are much bigger than the Q-factor
of the process and also the masses of the electron and the anti-neutrino. In such
a case, equation (16) implies that the maximum kinetic energy achievable by
the electron is given by

(Te)max ' Q−mν̄e (17)

Since anti-neutrino is very difficult to detect but electrons are not, one might
hope to experimentally measure (Te)max, Q and from there derive an estimate
for the mass of an anti-neutrino. However, this cannot be done in practice be-

cause the mass of anti-neutrino
(
∼ 0.320± 0.081 eV/c

2
)

is very small compared

to the error-bars of β-decay experiments. The energy equations we discussed
so far correspond to the rest frame of the mother particle. These energies will
of course differ in other frames. To derive results or conclusions that are frame

4Otherwise, the other daughter would also have to be at rest and that would mean m =
m1 +m2. It is very unlikely that there will exist three particles whose masses have this kind
of an exact relation.
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independent, one uses some specific Lorentz invariant scalars which we define
here :

m2
12 ≡ (p1 + p2)

2
= (p− p3)

2

m2
23 ≡ (p2 + p3)

2
= (p− p1)

2

m2
31 ≡ (p3 + p1)

2
= (p− p2)

2
(18)

Note that these are denoted by the letter m, but they are not masses of some
particles. Not all three of them are independent – two are. Because,

m2
12 +m2

23 +m2
31 = 3m2 +m2

1 +m2
2 +m2

3 − 2p2

m2
12 +m2

23 +m2
31 = m2 +m2

1 +m2
2 +m2

3 (19)

1.2 Lecture 2 : January 6, 2016

Reminder : A given channel of a decay is identified by the identities of the
particles being produced.

In two body decays such as a (p) → a1 (p1) + a2 (p2), we have a total of six
unknowns and four conservation equations. So, there are two independent un-
knowns. In the rest frame of a these would be the two angles that determine the
direction of the straight line along which a1 and a2 move, in opposite directions.
Since everything else is determined, we know exactly what amount of energy
each of a1,2 carry. In three body decays such as a (p)→ a1 (p1)+a2 (p2)+a3 (p3),
there are nine unknowns and four equations, leaving five independent unknowns.
This is not enough information to exactly pinpoint E1,2,3. Therefore, we try to
derive the range of energies the product particles are allowed to carry. In the
last class we derived an upper bound and a lower bound for E3. Today we shall
investigate whether all energy values lying between those bounds are accessible
to a3 or not, and also find out the allowed energy values of a1,2.

A very important thing to remind ourselves of : these energy values and their
bounds etc. have been derived in the rest frame of a. If we keep on working
in the same frame, we shall derive the allowed ranges of the energies in this
particular frame. However, we would like to derive the bounds of some Lorentz
invariant quantities so that they hold irrespective of the frame we choose to be
in. To that end, we defined the three quantities m12,m23,m31, of which only
two are independent because the sum of their squares is fixed for a given channel
:

m2
12 +m2

23 +m2
31 = m2 +m2

1 +m2
2 +m2

3

Today we shall work out the allowed ranges of the quantities m2
12 etc. and

visualize the bounds by plotting them on a plane5.

5Because only two of them are independent, we plot two of them on a plane. The third
one gets fixed by equation (19). In other words, if we plot all three of m2

12,23,31 in a 3-d plot,

the allowed values will lie on a 2-plane by virtue of equation (19).
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The Dalitz triangle :

There is a nice geometric way of plotting on a plane three non-negative numbers
m2

12, m2
23 and m2

31 whose sum is fixed. Consider an equilateral triangle. From
any point lying inside (meaning an interior point) the triangle, draw perpendicu-
lars on the three sides. The sum of the lengths of these three perpendiculars is a

constant =
√

3
2 (length of a side of the triangle). For a given channel, we choose

an equilateral triangle with a side length6 equal to 2√
3

(
m2 +m2

1 +m2
2 +m2

3

)
.

Any point inside the triangle now gives us a possible set of values for
(
m2

12,m
2
23,m

2
31

)
:

Note that once we fix the distances of an interior point from two of the sides
(say, m2

12 and m2
23), its distance from the third side (m2

31) gets automatically
fixed. This triangle is called the Dalitz triangle.

The Dalitz Plot : This is another way of plotting the invariant scalar. Here,
we only plot two of them, say m2

12 and m2
23 along two perpendicular axes.

For a given channel, the products may come out with various combinations of
momenta, resulting in various values of m2

12, m2
23 and m2

31. However, there is a
region in the plot, called the Dalitz region, outside which the points will not
wander, barring experimental errors. Using only kinematics, we will figure out
the shape of the boundary of this region. How the points will be distributed
inside the Dalitz region is governed by the dynamics of the process. We will not
focus on the dynamics now.

m2
12 is a Lorentz scalar. Let’s compute its value in the rest frame of a. In

the calculations below, frame-dependent quantities will bear the superscript (0)

to denote that we are computing in a’s rest frame.

m2
12 = (p1 + p2)

2
= (p− p3)

2
= m2 +m2

3 − 2mE
(0)
3

6With a scaling convention that 1 mass unit of the particles ≡1 length unit of the triangle
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⇒
(
m2

12

)
max

= m2 +m2
3 − 2m

(
E

(0)
3

)
min

We obtained
(
E

(0)
3

)
min

in equation (15). Using that,

(
m2

12

)
max

= m2 +m2
3 − 2mm3 = (m−m3)

2
(20)

Similarly, (
m2

12

)
min

= m2 +m2
3 − 2m

(
E

(0)
3

)
max

= (m1 +m2)
2

(21)

Similarly, (
m2

23

)
max

= (m−m1)
2(

m2
23

)
min

= (m2 +m3)
2 (22)

Hence, the Dalitz region has to be contained inside the dotted boundary shown
in the figure below :

All the points inside this dotted rectangle will not be accessible to the decay
events because in determining the bounds of m2

12 we have not put any restric-
tions on m2

23 and vice versa. So, let us fix a value of m12 and see which values
of m23 are then allowed. We shall choose to do this computation in the CM7

frame of a1 and a2. Frame-dependent quantities computed in this frame will be
bear a superscript ∗.

m12 = E∗1 + E∗2 [ ∵ in the CM frame (~p1 + ~p2 = 0) ] (23)

∴ p∗1 + p∗2 =
(
m12,~0

)
(24)

In the ∗ frame, we need to calculate

m2
23 = (p∗2 + p∗3)

2
= m2

2 +m2
3 + 2 (E∗2E

∗
3 − ~p∗2.~p∗3) (25)

7CM frame in special relativity does not mean “center of mass” frame. In special relativity,
the mass that enters in the dynamics is frame-dependent. Hence, in any frame one has two
masses to worry about, the frame-dependent mass that enters the dynamical equations and
the rest mass of the particle. However, the center of mass frame used in classical mechanics
is also the frame in which the total 3-momentum is zero. And this is the concept of prime
importance. Therefore, in special relativity, we replace the phrase “center of mass” with the
more appropriate phrase “center of momentum”. Hence, CM frame in special relativity ⇒
Center of Momentum frame, the frame in which the total 3-momentum is zero.
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To find E∗2,3, start from

m2 = (p∗)
2

= ((p∗1 + p∗2) + p∗3)
2

= m2
12 +m2

3 + 2m12E
∗
3

m2
1 = (p∗1)

2
= ((p1 + p2)− p2)

2
= m2

12 +m2
2 − 2m12E

∗
2

(26)

From kinematics alone, we figured out E∗2,3 in terms of m12, m2 and m3. Now
we have everything we need to put into equation (25) and get an expression for
m23 in terms of m12, m1, m2 and m3. Now, m12 fixes E∗2,3, or equivalently |~p∗2|,
|~p∗3|. The only parameter in equation (25) that is not fixed by m12 is the angle
θ between ~p∗2 and ~p∗3. Since −1 ≤ cos θ ≤ 1, therefore

(m23)
2

max
min

= m2
2 +m2

3 + 2 (E∗2E
∗
3 ± |~p∗2||~p∗3|) (27)

For an arbitrary choice of the masses of the particles, this would result in a
Dalitz region that looks something like the following :

I have deliberately drawn a graph that merges smoothly on the edges (dotted
lines) determined by the bounds we obtained earlier. This is exactly what will
happen in a real plot. Let’s understand why. First of all, if the top edge and the
bottom edge be tangents to the boundary of the Dalitz region, then so would
be the right and the left edges. Because, one can flip the order of the axes by
relabeling the particles and the nature of the plot should not change. In other
words, if bounds of m23 behave in a certain way for a fixed value of m12, then
there is no reason why bounds of m12 should behave differently for a given value
of m23. This is why we don’t get a plot that looks like

Now, the fact that all the edges are tangents to the boundary can be argued
this way. The curves for the upper and lower bounds of m2

23 will merge when
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|~p∗2||~p∗3| = 0. This can happen when either of the two factors vanish. Carry
forward the calculation from here to convince yourself that |~p∗2| = 0 or |~p∗3| = 0
happens on the left and the right edges respectively.

The Dalitz plot is a very important tool for experimentalists. Suppose in a
decay process you have discovered a new particle whose mass you do not know.
You can look at the Dalitz region whose shape depends on the masses of all the
particles involved and find an estimate for the mass of the new particle.

Tomorrow we will talk about the kinematics of scattering. Let us clear up a
few things about some nomenclature. In the past, scattering experiments used
to be performed with fixed targets. This frame in which the target would be
kept fixed used to be called the Lab frame. Modern experiments are so designed
that we can create the CM frame in the lab itself. However, the previous nomen-
clature has stuck and many people still call the fixed target frame by the name
“Lab frame”. We shall take use the same nomenclature. In our convention,
Lab frame ⇔ fixed target frame. Palash Pal’s book is more accurate that
way – he uses the names “fixed target frame” and “CM frame”.

1.3 Lecture 3 : January 7, 2016

Kinematics of scattering :

Scatterings can be of many types. Elastic scatterings are those in which the
particles do not change identities – outgoing particles are the same as the in-
coming particles. Inelastic scatterings are those in which the particle content
changes after scattering. For simplicity, we will consider 2-to-2 scatterings.

a1 (p1) + a2 (p2)→ a
′

1

(
p

′

1

)
+ a

′

2

(
p

′

2

)
(28)

We work in the center of momentum frame of the incoming particles. In this
frame the formulas look simple. Hence,

~p1 + ~p2 = 0 = ~p
′

1 + ~p
′

2 (29)

The second half of the above equality follows from momentum conservation.
Define :

~P
′

CM = ~p
′

1 = −~p
′

2 (30)

Energy conservation implies

E1 + E2 = E
′

1 + E
′

2 ≡ Etot (31)

⇒
√
|~P ′
CM |2 +m

′2
1 +

√
|~P ′
CM |2 +m

′2
2 = Etot (32)

Now,
E

′

2 = Etot − E
′

1
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⇒ E
′2
2 = E2

tot + E
′2
1 − 2E

′

1Etot (33)

Also, in the CM frame :

E
′2
2 − E

′2
1 = m

′2
2 −m

′2
1 (34)

Comparing equations (33) and (34), we get

E
′

1 =
E2
tot +m

′2
1 −m

′2
2

2Etot
(35)

Similarly, one can calculate an expression for E
′

2. Or we can interchange the
labels 1 and 2 to get

E
′

2 =
E2
tot +m

′2
2 −m

′2
1

2Etot
(36)

We see that in a 2→ 2 scattering, given the total energy of the particles in the
initial state, the energies of the particles in the final state are determined. Thus,
the magnitudes of the 3-momenta are also determined, but the directions are
not. In the CM frame we need to specify the direction of the 3-momentum of
one of the final particles. This requires two angular parameters – like the polar
and the azimuthal angles on the surface of a sphere.

Consider an endergonic reaction for which the total mass of the final par-
ticles is bigger than that of the initial particles. An endergonic scattering is
obviously an inelastic scattering.

m1 +m2 > m
′

1 +m
′

2 ⇒ T1 + T2 < T
′

1 + T
′

2 (37)

For example, consider a two body decay which is endergonic. In the rest frame
of the mother particle with mass m1, energy conservation gives m1 = m

′

1 +
m

′

2 + T
′

1 + T
′

2. The condition for it being endergonic implies T
′

1 + T
′

2 < 0, which
can never happen (because kinetic energy is non-negative). Clearly, endergonic
decays can never occur. You might protest that this conclusion has been drawn
in the rest frame of the decaying particle and may not be true in all frames.
But, the decay of a particle is a frame invariant phenomenon. Hence, even if we
sit in a frame where the mother particle has an enormous amount of energy E1,
it will not decay endergonically. The next question to ask would be whether
endergonic scatterings occur or not; and if they do, then what conditions have
to be met. Let us investigate this in the lab frame where one of the initial
particles, say a2, is at rest.
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Since ~p2 = 0, therefore, ~p1 = ~p
′

1 +~p
′

2, and ~p1, ~p
′

1, ~p
′

2 lie on the same plane. We
choose that plane to be the plane of the paper. The 4-momenta of the particles
are

p1 = (E1, |~p1|, 0, 0)
p2 = (m2, 0, 0, 0)

p
′

1 =
(
E

′

1, |~p
′

1| cos θ1, |~p
′

1| sin θ1, 0
)

p
′

2 =
(
E

′

2, |~p
′

2| cos θ2, |~p
′

1| sin θ2, 0
) (38)

When we put a detector to the right at a fixed angle θ, we can measure the
energies of particles getting scattered in that direction. Varying θ then gives us
the angular distribution. We will now employ 4-momentum conservation and
perform a bit of algebra.

p1 + p2 = (E1 +m2, |~p1|, 0, 0)

⇒ p1 + p2 − p
′

1 =
(
E1 +m2 − E

′

1, |~p1| − |~p
′

1| cos θ1,−|~p
′

1| sin θ1, 0
)

⇒ m
′2

2 = p
′2
2 =

(
p1 + p2 − p

′

1

)2

=
(
E1 +m2 − E

′

1, |~p1| − |~p
′

1| cos θ1,−|~p
′

1| sin θ1, 0
)2

⇒ m
′2
2 = (E1 +m2)

2 − |~p1|2 +m
′2
1 − 2 (E1 +m2)E

′

1 − 2|~p1||~p
′

1| cos θ1 (39)

From this, one can determine the energy E
′

1 of a
′

1 as a function of the scattering
angle θ1– the angular distribution of energy. The masses of the particles and
the energy E1 of the incoming particle a1 will appear as parameters in the ex-
pressions for E

′

1,2. Since E
′

1 has to be positive, that leads to a constraint in the
parameters. This constraint implies that there is a threshold energy E1 of the
incoming beam of particles below which endergonic scattering will not occur.
Details of that calculation is straightforward and you can do it as an exercise.
So, we see that endergonic scatterings are possible, although endergonic decays
are not.

Symmetry and Groups :

Group theory is the mathematical structure of symmetries. Symmetries play an
all-pervading role in physics. Particle physics is one of the areas where symmetry
becomes the most important guiding star. We will assume that the very basics
of group theory are known to you. Let us summarize a few results before we
wrap up today.

• Given a group G and H ⊂ G, H is a subgroup of G (written H ≤ G) iff
∀a, b ∈ H, ab−1 ∈ H.

• GL (3) is the set of all 3× 3 invertible matrices and forms a group under
matrix multiplication.
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• O (3) is the set of all 3× 3 orthogonal matrices and forms a group under
matrix multiplication. O (3) ≤ GL (3).

SO (3) is the set of orthogonal 3× 3 matrices with determinant 1. This set also
forms a group. This is the group of proper rotations, meaning, it doesn’t contain
inversions and reflections. All elements in SO (3) are continuously connected
to the identity matrix. In the next class, we will take up a detailed study of
rotations and derive results which apply generally to a lot of other groups of
our interest.
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2 Week 2

2.1 Lecture 4 : January 11, 2016

We started talking about symmetries and groups. Let us consider rotations in
3-d space. Rotation about the z-axis by an angle φ is given by the matrix

Rz (φ) =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 '
1 −φ 0
φ 1 0
0 0 1

 ≡ I− iφTz (40)

where the approximation holds for small φ. The above equation defines the
matrix Tz. It is defined with a factor of i to ensure that Tz is Hermitian.
Mathematicians do not mind working with anti-Hermitian matrices and they
will define it without the factor of i. Similarly we can define the matrices Tx,y.
Let us list these matrices.

Tx =

0 0 0
0 0 −i
0 i 0

 , Ty =

 0 0 i
0 0 0
−i 0 0

 , Tz =

0 −i 0
i 0 0
0 0 0

 (41)

We can now compute the matrix commutators of these three matrices. It yields,

[Tx, Ty] = iTz (and cyclic permutations) (42)

This is the angular momentum algebra. We notice that the matrices Tx,y,z,
called generators of rotation, give infinitesimal rotation matrices. We would
like to know if the matrices corresponding to finite (meaning not infinitesimal)
rotations can also be expressed in terms of these generators. Let φ be finite.
We can achieve a rotation about the z-axis by an angle φ by breaking it into N
smaller rotations, each by an angle φ

N about the z-axis. Then we take the limit
N → ∞ such that each step becomes smaller and smaller and we can use the
expression for infinitesimal rotation given in equation (40).

Rz (φ) = lim
N→∞

(
I− i φ

N
Tz

)N
= exp (−iφTz) (43)

A general rotation ~φ
(

angle =
∣∣∣~φ∣∣∣ , axis of rotation=φ̂

)
will be given by exp (−iφjTj).

Recall that, in order to exponentiate matrices, you should diagonalize it and
then proceed.

We have already seen explicitly that the commutators of two of the genera-
tors yields a linear combination of the generators [equation (41)]. We can also
see that from the general theory of Lie groups and Lie algebras8. Closure prop-
erty of the rotation group implies that multiplying two rotations, exp (−iα.T )
and exp (−iβ.T ), gives another rotation, say, exp (−iγ.T ).

exp (−iα.T ) . exp (−iβ.T ) = exp (−iγ.T ) (44)

8We shall learn what these things are in course of time.

15



Expanding up to first order,

LHS = (I− i(α.T )) (I− i(β.T )) ' I− i (α.T + β.T )

This expansion holds when both α and β are small, in which case the resultant
rotation will also be small. Therefore, the RHS can also be expanded to first
order.

RHS = I− i (γ.T )

Comparing the two sides, α+β = γ. This also tells us that order of two infinitesi-
mal rotations do not matter, since α+β = β+α. ⇒ Infinitesimal rotations commute.For
large rotations, we need more terms in the expansions. Expanding the LHS up
to second order gives

LHS = exp (−iα.T ) . exp (−iβ.T ) ' I−i (α.T + β.T )−1

2
(α.T + β.T )

2−1

2
[α.T, β.T ]

(45)

RHS ' I− i (γ.T )− 1

2
(γ.T )

2
(46)

Comparing the two equations above order by order, it is evident that the com-
mutator of any two generators yields a linear combination of the generators
themselves. This approach, where we start from a Lie group and derive the Lie
algebra underlying it, we can see that the algebra is closed automatically9.

Digression :

Definition of an algebra over a field : Let F be a field and V be a vector
space over F . Let V be equipped with a binary operation [ , ] : V × V → V .
Then V is an algebra over the field F if the following hold

1. ∀x, y, z ∈ V, [x+ y, z] = [x, z] + [y, z] and [x, y + z] = [x, y] + [x, z]

2. ∀x, y ∈ V, and∀a, b ∈ F, [ax, by] = ab [x, y]

Definition of Lie Algebra : A Lie algebra is an algebra V with the binary
operation [ , ] : V × V → V satisfying the following properties :

1. ∀x, y ∈ V, [x, y] = − [y, x] (antisymmetry)

2. ∀x1, x2, y ∈ V, [x1 + x2, y] = [x1, y] + [x2, y] (linearity in prefactor).
[This and antisymmetry implies linearity in the post-factor.]

3. ∀x, y ∈ V, ∀α ∈ F, [αx, y] = α [x, y] (distributive scalar multiplication)

4. ∀x, y, z ∈ V, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity)

9Read this statement once again after we have discussed the definitions of Lie groups and
Lie algebras.
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This binary operation [ , ] is therefore a bilinear product which is called the Lie
product. Vectors forming a basis of the vector space V are called generators
of the Lie algebra.

The span of the matrices Tx,y,z form a vector space. We notice the fact that
this vector space along with the binary operation of matrix commutation defined
on it, forms a Lie algebra! This is a concrete example of the abstract definition
of the Lie algebra we have given above. In this concrete example, the abstract
Lie product is commutators of matrices. Associativity of matrix multiplication
ensures that the Jacobi identity is satisfied in this algebra. However, an abstract
Lie algebra is given by defining an abstract Lie product on a vector space.
There is no reason to suspect that this Lie product can always be written as a
“commutator”. In order to be able to do that, one has to have another product,
say ∗, defined on the space such that [A,B] = A ∗ B − B ∗ A makes sense.
On top of that, this product has to be associative so that the Jacobi identity
is satisfied, and distributive over addition so that bilinearity of [, ] is satisfied.
In other words, the vector space along with the operation ∗ has to form an
associative algebra. In the matrix Lie algebras, matrix multiplication has all
these properties and hence induces a Lie algebra on the space.

So, in our case, V = span {Tx, Ty, Tz} and a general matrix belonging to V
has the form αxTx +αyTy +αzTz. Given a basis (set of generators) {Ta} of the
Lie algebra, the Lie products of the basis vectors carry all the information abut
the Lie product of two arbitrary vectors (because of bilinearity of Lie products).
Therefore, it is sufficient to provide the Lie products

[Ta, Tb] = f cabTc (47)

The numbers f cabare called the structure constants of the Lie algebra. Struc-
ture constants are antisymmetric in the two lower indices. Evidently, they de-
pend on the choice of basis (generators) of the Lie algebra. Equation (42) gives
us the structure constants of the angular momentum Lie algebra for the basis
{Tx, Ty, Tz}. Let us illustrate by one example how structure constants depend
on basis.

Consider a Lie algebra generated by tx, ty, tz, with the non-zero structure
constants fzxy = fxyz = fyzx = i. That is, [tx, ty] = itz and cyclic permutations.
Let’s choose a different basis {tz, t+, t−} where

t± = tx ± ity (48)

This yields,
[tz, t±] = ±t±, [t+, t−] = 2tz (49)

That is, the non-zero structure constants in this basis are f±z± = ±1, fz+− = 2.

Representation :

Suppose we have an abstract Lie algebra A generated by tx, ty, tz. The idea
of representation is to look for three matrices, Tx, Ty, Tz, such that the com-
mutation relations of these matrices mimic the Lie product relations of the
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generators tx, ty, tz. To be precise, the mapping ti → Ti, i = z,+,−, is called a
representation of the Lie algebra if

[tz, t±] = ±t±, [t+, t−] = 2tz ⇒ [Tz, T±] = ±T±, [T+, T−] = 2Tz (50)

For one last time, let me mention that the square brackets on the LHS of the
above implication stand for abstract Lie products, while those on the RHS
stand for matrix commutators, a concrete realization of the Lie product. The
above mapping establishes a one-to-one correspondence between the abstract
Lie algebra A and the matrix Lie algebra M generated by Tx, Ty, Tz.

Now we shall work out the entries of the matrices T+, T−, Tz in the eigenbasis
of Tz. Suppose that these are N ×N matrices and they act as linear operators
on the vector space of N × 1 column vectors. Let vk be the eigenvector of Tz
corresponding to the eigenvalue k (which can be any complex number).

Tzvk = kvk (51)

Now, [Tz, T±] = ±T± implies

Tz (T±vk) = (T±Tz ± T±) vk = (k ± 1) (T±vk) (52)

This means that (T±vk) is either an eigenstate of Tz with eigenvalue (k ± 1) or
the zero vector. Remember, (k ± 1) are complex numbers, as of now, and are
different from k. Eigenvectors corresponding to different eigenvalues are linearly
independent. If we keep on applying T+on vk, we shall keep on getting more and
more linearly independent vectors unless for some complex number j = k+ r (r
is a non-negative integer)

T+vj = 0 (53)

Since the space on which the generators act is finite dimensional, such a j is
guaranteed to exist. Similar arguments tell us that there must exist a complex
number q = k − s (s is a non-negative integer) so that

T−vq = 0 (54)

These numbers j and q are not completely independent and arbitrary. One
thing is certain :

j − q ∈ {non-negative integers} (55)

We shall later prove that q = −j. Sometimes we shall use the notations

vj → |j, j〉
vk → |j, k〉

We do not need q to label the states because of the result q = −j which we shall
derive shortly.

We have seen that T±vk are eigenstates of Tz with eigenvalues (k ± 1).
Hence, T±vk = #vk±1 where # is a number that fixes the normalization. Our
convention of normalization will be the following.

T−vk = vk−1

T+vk = rkvk+1
(56)
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The first one of the equations above is the choice of normalization. In this
normalization, rk are some numbers yet to be determined. We shall do that in
the next class. Before concluding today, let us learn a nice fact. In the matrix
Lie algebra that we have been working with today, define

T 2 = T 2
x + T 2

y + T 2
z (57)

and notice [
T 2, Tx,y,z

]
= 0 (58)

That is, a particular combination of second order operators (second order in
the generators) gives zero Lie product (or “commutes”) with all the elements
of the Lie algebra. For another Lie algebra, this same combination might not
have the same property. However, Casimir’s theorem ensures that for any
Lie algebra we can always find a second order operator which commutes with
all the elements of the Lie Algebra.

Another fact : Tx,y,z have been so defined that they are Hermitian. This
implies that T 2

x,y,z are positive definite. This implies that

eigenvalues of T 2 ≥ eigenvalues of T 2
x,y,z

2.2 Lecture 5 : January 13, 2016

Equation (55) from the last class implies that we must be able to go from vj
to vq by a finite number of applications of T−. Today we shall learn how many
times we have to use T− to get there. Start by deriving a formula for rk.

T+vk = rkvk+1 = T+ (T−vk+1) = (T−T+ + 2Tz) vk+1

= (rk+1 + 2 (k + 1)) vk+1 (59)

We get a recursion relation

rk+1 − rk = −2 (k + 1) (60)

A boundary condition for the recursion relation would be rj = 0, since T+vj = 0.
Therefore,

rj − rk =

j−1∑
i=k

(ri+1 − ri) = −2

j−1∑
i=k

(i+ 1) = −2

j∑
i=j

i

= −j (j + 1) + k (k + 1) (61)

Therefore,
rk = j (j + 1)− k (k + 1) (62)
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This is consistent with rj = 0, of course. Now we shall derive the relation
between j and q.

T+T−vq = 0⇒ (T−T+ + 2Tz) vq = 0

⇒ (rq + 2q) vq = 0 ⇒ (rq + 2q) = 0

Entering the expression for rq,

q (q − 1) = j (j + 1) (63)

This is a quadratic equation in q and the two roots are

q = −j, or q = j + 1 (64)

The second root is not possible since we demanded that vj would be the highest
rung in the ladder of states obtained by applying T+on vk. Hence, we get the
sought after relation

q = −j (65)

Equation (55) now implies that 2j must be a non-negative integer, and hence

j must be an integer or a half odd integer (66)

Eigenvalues of Tz are

−j, (−j + 1) , . . . (j − 1) , j ⇒ # distinct eigenvalues = (2j + 1) (67)

Therefore, the matrices {Tz, T±} give a (2j + 1)-dimensional representation.
The vector space is

V = span {vj , vj−1, . . . v−j} (68)

In this ordered basis, the matrices look like the following.

Tz =


j 0 · · · 0
0 j − 1 · · · 0
...

...
. . .

...
0 0 · · · −j

 , T+ =


0 rj−1 0 · · · 0
0 0 rj−2 · · · 0
...

...
. . .

. . .
...

0 0 · · · · · · r−j
0 0 · · · · · · 0

 , T− =



0 0 · · · 0 0
1 0 · · · 0 0

0 1
. . .

...
...

...
...

. . .
...

...
0 0 · · · 1 0


(69)

Recall that the matrix representation D of an operator T , in an ordered
basis {ei}is obtained from the following :

Tei = Djiej (70)

That is, one has to read off the coefficients and transpose them. This convention
is adopted because, as a consequence, the matrix representation of the composite
operator T1T2 would be D1D2, where D1,2 are the matrix representations of T1,2.
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Note that the matrices Tx, Ty, obtained from T±, will not always be Her-
mitian. The reason for that can be traced back to our knowledge of linear
algebra/quantum mechanics. The matrix representation of a Hermitian opera-
tor does not necessarily have to be a Hermitian matrix. When the ordered basis
being used is orthonormal, Hermitian operators do give Hermitian matrices. In
the normalization convention we are using, the basis vectors are orthogonal al-
right (because they correspond to distinct eigenvalues of Tz), but they are not
normalized.

Irreducible representations :

Consider the subspace span {vj , vj−1}. Tz and T+ act on an arbitrary element
of this subspace to produce another element in this subspace. However, T− may
act on an element in this subspace and produce a result outside of this subspace.
Similarly, no proper subspace of V is invariant under the action of all the three
generators in the above sense. Since no such invariant subspace exists in V ,
therefore this representation is called an irreducible representation (or irrep
in short).

Equivalent representations :

Given Ti’s, define T
′

i = STiS
−1 for an arbitrary invertible matrix S (with proper

dimensions). T
′

i ’s also form a representation of the algebra. However, these two
representations are related by a similarity transformation and are called equiv-
alent representations. Quite naturally, we shall be interested in inequivalent
representations.

We conclude today by finding out the eigenvalues of the quadratic operator
T 2.

T 2 = T 2
x + T 2

y + T 2
z = T 2

z +
1

2
(T+T− + T−T+)

⇒ T 2vk =

(
k2 +

1

2
(rk−1 + rk)

)
vk = j (j + 1) vk (71)

So, all the eigenstates vk of Tz are simultaneously eigenstates of T 2 with a
common eigenvalue j (j + 1). That is, T 2 has degeneracy in its spectrum! We
started by analyzing symmetries and it led us to degeneracy of an observable.
This is a common feature of systems with symmetry.

21



2.3 Lecture 6 : January 14, 2016

In the last class, we saw that the generators of rotation form the Lie algebra
su (2). You might think that the algebra should be called so (3) since it underlies
the Lie group SO (3). The fact is that these two Lie algebra are one and the
same. That is, the groups SU (2) and SO (3) have the same algebra. The reason
for this will be discussed later. As a teaser, let’s just make a fancy statement
which we will understand properly in due time – SU (2) is the universal (double)
cover of SO (3).

So, we saw that an abstract Lie algebra su (2), generated by three generators,
say, tz, t±, with the Lie products [tz, t±] = ±t±, [t+, t−] = 2tz, may be put
in a one-to-one correspondence with a set of matrices Tz,T± if these matrices
have commutation relations [Tz, T±] = ±T±, [T+, T−] = 2Tz. This would be a
concrete realization of the abstract algebra. We call this a matrix (or linear)
representation of the Lie algebra. We also saw that the representations of this
algebra are (2j + 1) dimensional where j is of the form n

2 , n ∈ N.

The j = 0 representation :

Mathematicians would call it the 1-representation because of its dimension 2j+
1 = 1. This is a trivial representation where the vector space is one dimensional,
hence the representative matrices are just numbers. Each of the generators tz,±
will have to be mapped to the number 0 since commutator of two numbers is
always 0.

The j = 1
2 representation :

Mathematicians call it the 2-representation. The vector spaceW is 2-dimensional.
Let’s choose two basis vectors and call them w1/2 and w−1/2. W = span

{
w1/2, w−1/2

}
.

Tz : w1/2 →
1

2
w1/2, w−1/2 → −

1

2
w−1/2

T+ : w1/2 → 0, w−1/2 → w1/2

T− : w1/2 → w−1/2, w−1/2 → 0

We already stated our normalization convention. This is a little different than
what is mostly used in quantum mechanics texts. With the above results, we
have

Tz =

[
1
2 0
0 − 1

2

]
, T+ =

[
0 1
0 0

]
, T− =

[
0 0
1 0

]
(72)

Tx =
1

2
(T+ + T−) =

1

2

[
0 1
1 0

]
, Ty =

1

2i
(T+ − T−) =

1

2

[
0 −i
i 0

]
(73)

These are nothing but the Pauli matrices with a factor of 1
2 that arises due to

the difference in normalization. However, the T matrices are Hermitian in the
j = 1

2 representation. We shall see that this will no longer hold for j = 1 and
above.
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The matrices Tx,y,z are traceless and Hermitian. They form a basis for the
real vector space of 2×2 traceless Hermitian matrices. The complex vector space
spanned by these three matrices will contain traceless matrices but an arbitrary
matrix in that space won’t be Hermitian (because of complex coefficients). So,
with real coefficients a1, a2, a3, an arbitrary 2 × 2 traceless Hermitian matrix
will take the form a1Tx + a2Ty + a3Tz. This is an element of the algebra. Let’s
exponentiate it. Exponential of a Hermitian matrix gives a unitary matrix.
Exponential of a traceless matrix gives a unideterminantal matrix10. Therefore,
the exponentiation of the elements of the algebra of the j = 1

2 representation of
su (2) gives rise to 2 × 2 unitary unideterminantal matrices ∈ SU (2). This is
the reason why we have been calling this Lie algebra su (2) all along. The above
discussion is one way to see how generators of SO (3) rotations also generate
SU (2) matrices.

Before moving on to discuss the j = 1 representation, let’s digress a bit and
talk about SU (3) and su (3).

Let exp (iA) ∈ SU (3). ⇒ A is a 3×3 traceless Hermitian matrix having the
most general form11

A =

a3 + 1√
3
a8 a1 − ia2 a4 − ia5

a1 + ia2 −a3 + 1√
3
a8 a6 − ia7

a4 + ia5 a6 + ia7 − 2√
3
a8

 ≡ 8∑
i=1

(aiλi) (74)

where ai’s are real and the matrices λi are called the Gell-Mann matrices.

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0


λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =


1√
3

0 0

0 1√
3

0

0 0 − 2√
3


(75)

Notice that the first three matrices are exactly the su (2) generators except for
the third row and column of zeroes augmented to them. We can also explicitly
calculate the commutators of these matrices to find that the commutation rela-
tions are closed. However, we can see that on two different counts. Firstly, the
general theory of groups tells us that combining two elements of the Lie group
SU (3) will produce another element in SU (3). Closure of the commutation
relations of the algebra will follow from the closure of the group. Secondly, com-
mutator of two traceless Hermitian matrices is a traceless anti-Hermitian matrix
(commutators of matrices are always traceless). Therefore, in [λ1, λ2] = i#, the

10Tr (logA) = log (detA)
11The parametrization used here of the entries in A is purely conventional.
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# has to be a traceless Hermitian matrix, and hence a (real) linear combination
of the λ matrices.

Also note that λ3 and λ8 commute. The subalgebra spanned by λ3 and λ8 is
Abelian. This is called the Cartan subalgebra of the Lie algebra12. One can
find essentially all information about a Lie algebra from its Cartan subalgebra.

The j = 1 representation :

This is a 3-dimensional representation. The eigenvalues of Tz are 1, 0,−1 and
let the corresponding eigenvectors be v1, v0, v−1.

Tz : v1 → v1, v0 → 0, v−1 → −v−1

T+ : v1 → 0, v0 → 2v1, v−1 → 2v0

T− : v1 → v0, v0 → v−1, v−1 → 0

We can read off the matrix elements :

Tz =

1 0 0
0 0 0
0 0 −1

 , T+ =

0 2 0
0 0 2
0 0 0

 , T− =

0 0 0
1 0 0
0 1 0

 (76)

⇒ Tx =

0 1 0
1
2 0 1
1
2 0 0

 , Ty =

0 −i 0
i
2 0 −i
0 i

2 0

 (77)

This is what we were talking about earlier – the matrices Tx,y are not Hermitian
in this representation. However, the operators tx,y are Hermitian and therefore
the linear operators Tx,y represent are Hermitian.

An important observation is that all these representations characterized by
half-integral j-values are irreducible. Irreducible representations are important
because all representations can be broken down in their irreducible components.
Let’s see what this breaking down means.

The direct sum representation :

Let V1,2 be two vector spaces over the same field F . Let
{
e1

1, e
1
2, . . . , e

1
n1

}
,
{
e2

1, e
2
2, . . . , e

2
n2

}
be two ordered bases of the two spaces respectively. The direct sum space
V ≡ V1 ⊕ V2 is another vector space (over F ) of dimension (n1 + n2)with the
natural ordered basis :

{
e1

1, e
1
2, . . . , e

1
n1
, e2

1, e
2
2, . . . , e

2
n2

}
. An arbitrary vector in

the direct sum space is denoted by v1⊕v2. Suppose we have two representations
ρ1,2 of the group G on the two vector spaces V1,2 respectively. The direct sum
representation ρ1 ⊕ ρ2 is defined to be a representation on the space V1 ⊕ V2

given by

(ρ1 ⊕ ρ2) (g) : V1⊕V2 → V1⊕V2 such that (ρ1 ⊕ ρ2) (g) (v1 ⊕ v2) = ρ1 (v1)⊕ρ2 (v2)
(78)

12Proper definition will follow soon.
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In the natural ordered basis, the matrix representations of the direct sum oper-
ators are going to be block diagonal.

(ρ1 ⊕ ρ2) (g)
(
e1

1

)
= e1

1D
1
11 (g) + e1

2D
1
21 (g) + . . .+ e1

n1
D1
n11 (g) + e2

1.0 + . . .+ e2
n2
.0

(79)
and so on. This gives the following block diagonal matrix for the operator
(ρ1 ⊕ ρ2) (g):

(ρ1 ⊕ ρ2) (g) =


D1 (g)n1×n1

0n1×n2

0n2×n1
D2 (g)n2×n2

 (80)

The nice block diagonal form arises because we have used the natural ordered
basis in the direct sum space. If one were to change basis in V1 ⊕ V2, one
would not get a block diagonal form in general. If, for a representation, all the
matrices corresponding to the group elements can be brought to the same
block diagonal form at once (by choosing one particular basis), then it is
evident that the representation is reducible13. The invariant subspaces would
correspond to the blocks. For example, if there is a 2× 2 square block starting
from the 5th diagonal element of each of the group representative matrices, then
the subspace spanned by {e5, e6} will be an invariant subspace.

Before ending today, let’s briefly state the motivation for studying group
representations in Physics. It should be common knowledge that symmetry
transformations of a physical system form a group (eg., Lorentz transformations,
Poincare transformations, rotations etc.). Let’s take the Lorentz group as an
example. In 4-d space, choose a set of Lorentz coordinates, and consider another
Lorentz frame whose coordinates are obtained by Lorentz-transforming your
frame. As a result, numerical values of many physical objects differ in the two
frames. Rules by which components of 4-vectors such as 4-velocity etc. change
are easy to deduce – they change in the same way as the 4-vector (t, x, y, z).
However, there are physical objects such as F , the electromagnetic field tensor,
whose components Fµν change in a systematic way which is different from how
4-vectors change. The components of this tensor can be put in the form of
an antisymmetric 4 × 4 matrix. The space of such matrices is 6-dimensional.
The way the components Fµν change due to a Lorentz transformation must be
a linear transformation on this space of 4 × 4 antisymmetric matrices. These
transformations will naturally have to form a representation of the Lorentz
group on the said space. Therefore, the various representations of symmetry
groups may essentially be implementations of the symmetry transformations on
the spaces of physical objects. All physical objects will have to “belong to” one
of the representations of the total symmetry group of the system.

13Necessary and sufficient conditions for reducibility of representations exist. Teaching those
will require half a semester worth of time, so we won’t do that now.
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3 Week 3

3.1 Lecture 7 : January 18, 2016

A representation of a group or an algebra is called reducible if the vector spce
on which the representation is defined has one or more non-trivial invariant
subspace(s). The null space and the total vector space which are trivial invariant
subspaces. In a reducible representation, all the matrices may be brought to a
block diagonal form by choosing a particular basis. However, changing the basis
(or even the order of the basis) is likely to destroy the block diagonal form.

For the su (2) Lie algebra, we can find irreps of every dimension n by setting
j = n−1

2 , so that (2j + 1) = n.
Today we will talk about the another way of combining two representations

to give a higher dimensional representation – the direct product representation.
As a motivation for this exercise, let’s start with the following question. In

quantum mechanics, angular momentum
(
~L
)

and spin
(
~S
)

operators both

satisfy the same algebra, namely su (2). They are different representations of
su (2) acting on different spaces. However, a particle may have both angular
momentum and spin, in which case we defined the total angular momentum as
~J = ~L+ ~S. What do we mean by this?

Direct product representation :

Let V1,2 be two vector spaces over a field F , having respective ordered bases{
e1

1, e
1
2, . . . , e

1
n1

}
and

{
e2

1, e
2
2, . . . , e

2
n2

}
. The direct product space V1 ⊗ V2 is de-

fined to be a vector space over F of dimension n1n2 with a natural ordered basis{
e1
i ⊗ e2

j

}(n1,n2)

(i,j)=(1,1)
. An arbitrary vector in the direct product space is v1 ⊗ v2

where v1,2 are arbitrary vectors in V1,2 respectively. For example,(
2e1

1 + 3e1
2

)
⊗
(
−1e2

1 + 3e2
7

)
= −2e1

1 ⊗ e2
1 + 6e1

1 ⊗ e2
7 − 3e1

2 ⊗ e2
1 + 9e1

2 ⊗ e2
7

Now, given two smaller representations ρ1,2 of a group G living on V1,2, we can
define a bigger representation ρ1 ⊗ ρ2, called the direct product representation
in the following way :

(ρ1 ⊗ ρ2) (g) (v1 ⊗ v2) ≡ (ρ1 (g) (v1))⊗ (ρ2 (g) (v2)) (81)

Let us now consider the rotation group. An arbitrary element of the group will
be rotation about the unit vector n̂ through an angle φ. If we have two represen-
tations R1

n̂ (φ) , R2
n̂ (φ) of the rotation group, then the product representation

Rn̂ (φ) acts as follows

Rn̂ (φ) (v1 ⊗ v2) =
(
R1
n̂ (φ) (v1)

)
⊗
(
R2
n̂ (φ) (v2)

)
, which, for small angle φ becomes

'
(
I− iφn̂.~T 1

)
v1 ⊗

(
I− iφn̂.~T 2

)
v2

= v1 ⊗ v2 − iφn̂.
[(
~T 1v1

)
⊗ v2 + v1 ⊗

(
~T 2v2

)]
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=
(
I− iφn̂.

[
~T 1 ⊗ I + I⊗ ~T 2

])
(v1 ⊗ v2) (82)

where the identities in the different spaces are all written by the same symbol
I with the assumption that you will figure out which identity belongs to which
space from the context.

Let’s answer the question we used as a motivation to study the direct product
representations. Angular momentum and spin – these two sets of operators act
on two different Hilbert spaces, say H1 and H2. States of a particle with both
angular momentum and spin will be represented by vectors in the direct product

space H1 ⊗H2. In this space, the angular momentum operator is really
−→
L ⊗ I

and the spin operator is I⊗
−→
S . Therefore, what we really mean by ~J = ~L+ ~S

is
~J = ~L⊗ I + I⊗ ~S (83)

As an exercise, we will build a direct product representation of the su (2) Lie
algebra from the j = 1

2 and the j = 1 representations. The product representa-
tion is going to be 6-dimensional. Let the ordered bases of the relevant vector
spaces be {v1, v0, v−1},

{
w1/2, w−1/2

}
and{

v1 ⊗ w1/2, v0 ⊗ w1/2, v1 ⊗ w−1/2, v−1 ⊗ w1/2, v0 ⊗ w−1/2, v−1 ⊗ w−1/2

}
.

We have

Tz : v1 ⊗ w1/2 → 1.v1 ⊗ w1/2 + v1 ⊗
1

2
w1/2 =

3

2

(
v1 ⊗ w1/2

)
(84)

Thus, the chosen basis vectors of the product space are all eigenvectors of Tz
with respective eigenvalues 3

2 ,
1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

3
2 - just what we get in addition

of angular momenta. Matrix representation of Tz in the product space in the
chosen basis is

Tz =



3
2 0 0 0 0 0
0 1

2 0 0 0 0
0 0 1

2 0 0 0
0 0 0 − 1

2 0 0
0 0 0 0 − 1

2 0
0 0 0 0 0 − 3

2

 (85)

However, T± will not be diagonal in this basis, quite evidently. You can work
out the matrix forms of these operators as an exercise.

Question : Is this product representation an irrep?
Had this been an irrep, its dimension suggests that it would correspond to

j = n−1
2 = 5

2 . However, the highest eigenvalue of Tz obtained above is 3
2 . Hence,

the product representation is reducible. In fact, it is isomorphic to the direct
sum representation of the two irreps j = 3

2 (dimension 4) and j = 1
2 (dimension

2). Symbolically, we write the following :

3⊗ 2 = 4⊕ 2 (86)

Let us explicitly find out the invariant subspaces. Define the following vectors :

a3/2 ≡ v1 ⊗ w1/2; a1/2 ≡ T−a3/2 = v0 ⊗ w1/2 + v1 ⊗ w−1/2

a−1/2 ≡ T−a1/2 = v−1 ⊗ w1/2 + 2v0 ⊗ w−1/2; a−3/2 ≡ T−a−1/2 = 3v−1 ⊗ w−1/2

(87)
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These four vectors are eigenvectors of Tz with respective eigenvalues 3
2 ,

1
2 ,−

1
2 ,−

3
2 .

Also,T± acting on a linear combination of a3/2,1/2,−1/2,−3/2 gives rise to another

linear combination of the same 4-vectors. Therefore, span
{
a3/2, a1/2, a−1/2, a−3/2

}
is an invariant subspace (4-dimensional) under the actions of Tz, T±. We shall
now look for another invariant subspace, 2-dimensional, whose basis vectors will
be linearly independent of the basis vectors of the invariant subspace already
obtained above. My claim is that there exists another linear combination of
v0 ⊗ w1/2 and v1 ⊗ w−1/2 which is linearly independent of a1/2 and is the high-
est state of a 2-dimensional invariant subspace. Let the linear combination be
αv0 ⊗ w1/2 + βv1 ⊗ w−1/2. We note that

Tz
(
αv0 ⊗ w1/2 + βv1 ⊗ w−1/2

)
=

1

2

(
αv0 ⊗ w1/2 + βv1 ⊗ w−1/2

)
(88)

This implies that, if this state indeed were a highest state, then the correspond-
ing irrep will be 1-dimensional. This being a highest state means

T+

(
αv0 ⊗ w1/2 + βv1 ⊗ w−1/2

)
= 0

⇒ (2α+ β)
(
αv0 ⊗ w1/2 + βv1 ⊗ w−1/2

)
= 0

⇒ (2α+ β) = 0 (89)

Not bothering about the normalization of the state, let’s take α = 1, β = −2.
Thus, define

b1/2 ≡ v0 ⊗ w1/2 − 2v1 ⊗ w−1/2

b−1/2 ≡ T−b−1/2 = b1/2 ≡ v−1 ⊗ w1/2 − v0 ⊗ w−1/2
(90)

It is straightforward to see that b−1/2 is killed by T−, and span
{
b1/2, b−1/2

}
is a

2-dimensional invariant subspace of the product space. Let’s also see explicitly
that b1/2 and a1/2 are linearly independent.

αa1/2 + βb1/2 = 0⇒ (α+ β) v0 ⊗ w1/2 + (α− 2β) v1 ⊗ w−1/2 = 0

⇒ α = 0 = β �

Similarly, b−1/2 and a−1/2 are also linearly independent. Therefore the set{
a3/2, a1/2, a−1/2, a−3/2, b1/2, b−1/2

}
contains 6 linearly independent vectors and

hence is a basis of the product space. In this basis, the reducibility of the
product space is obvious.

Upshot : by taking a direct product of a 3-dimensional irrep and a 2-
dimensional irrep of su (2), we get a reducible product representation made
up of two irrep components – one 4-dimensional and another 2-dimensional.
This is exactly what we did while studying addition of angular momentum in
quantum mechanics. The process of breaking down the product space into its
irrep-components is termed Clebsch-Gordan decomposition.
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When in quantum mechanics we add two angular momenta, say, j1 =
2 (5-dimensional irrep of su (2)) and j2 = 1 (3-dimensional irrep of su (2)), we
find that it results in the following set of angular momenta :

j = (j1 + j2) , (j1 + j2 − 1) , . . . , (|j1 − j2|+ 1) , (|j1 − j2) → 3, 2, 1

Writing the dimensions of the irreps, we get

5⊗ 3 = 7⊕ 5⊕ 3

You can count the number of basis states on both sides and see for yourself that
they match.

Teaser for the next few lectures :
In su (3), we will carry out exactly the same exercise. Conceptually there

won’t be any leap forward, but unlike su (2), su (3) has two generators that
commute with each other. We shall choose simultaneous eigenvectors of those
two operators as our basis vectors. That will result in a little more work on our
part, and some extra features in the spectrum of su (3). For example,

• Unlike su (2), su (3) does not have irreps of every dimension.

• su (3) has two inequivalent irreps of dimension 3, and they are denoted
by 3 and 3̄. Combining these two gives 3 ⊗ 3̄ = 8 ⊕ 1. We also have
3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1. These two decompositions have special signifi-
cance in the context of elementary particle physics as we will learn soon.

3.2 Lecture 8 : January 20, 2016

Let exp (iA) be an arbitrary SU (3) matrix. This implies that A is a 3 × 3
traceless Hermitian matrix. The most general 3× 3 traceless Hermitian matrix
can be written in the following form :

A =

a3 + a8√
3

a1 − ia2 a4 − ia5

a1 + ia2 −a3 + a8√
3

a6 − ia7

a4 + ia5 a6 + ia7 − 2a8√
3

 (91)

where ai ∈ R, i = 1 (1) 8. It is evident14 that 3× 3 traceless Hermitian matrices
form a real vector space of dimension 8. We consider the real vector space
spanned by λ’s and not the complex vector vector space because the space is that
of Hermitian matrices. The above has been a standard choice of parametrization

143 × 3 complex matrices have 9 complex entries ⇒ 18 real parameters. The condition for
being Hermitian gives 3 complex equations and 3 real equations ⇒ 9 real equations in total.
Tracelessness gives another real equation. Hence we are left with 18− 9− 1 = 8 independent
real parameters.
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of the SU (3) matrices since pretty early. From the above parametrization, eight
(independent) basis vectors can be read off :

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0

 λ4 =

0 0 1
0 0 0
1 0 0


λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0

 λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 = 1√
3

1 0 0
0 1 0
0 0 −2


(92)

These are known as the Gell-Mann matrices, as we mentioned earlier. In the
space of complex matrices one can define a norm15 Tr

(
A†A

)
. All the Gell-

Mann matrices have the same norm, namely 2. The first three matrices λ1,2,3

are nothing but twice T1,2,3 with an extra row and an extra column of zeroes
appended at the end. It is straightforward to see that span {λ1, λ2, λ3} is a
subalgebra which is isomorphic to su (2). It is customary to choose the following
as generators of su (3) :

Tx ≡
λ1

2
, Ty ≡

λ2

2
, Tz ≡

λ3

2
, Vx ≡

λ4

2
, Vy ≡

λ5

2
, Ux ≡

λ6

2
, Uy ≡

λ7

2
, Y ≡ λ8√

3
(93)

Define
T± = Tx ± iTy, U± = Ux ± iUy, V± = Vx ± iVy (94)

You might wonder why there is a Tz operator and no Uz or Vz operator. We
already stated without proof that su (3) has a maximum of two commuting
generators. In our choice, these are Tz and Y , the diagonal matrices. As a
result, Tx,y,z form the su (2) subalgebra. If we change basis and diagonalize16

− 1
2Tz + 3

4Y (call it Uz), then Ux,y,z will form the su (2) subalgebra. So, the
reason why we call the first three operators Tx,y,z is essentially because they
give the su (2) subalgebra and we choose to name them with the letter T .

An abstract su (3) Lie algebra will have generators t+, t−, tz, u+, u−, v+, v−, y

15This satisfies all the defining properties of a norm, namely

• ‖ A ‖≡ Tr
(
A†A

)
≥ 0 with equality holding iff A = 0.

• ‖ zA ‖= |z| ‖ A ‖, ∀z ∈ C

• ‖ A+B ‖≤‖ A ‖ + ‖ B ‖

16The reason for taking this particular linear combination will become apparent soon.
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with the table for Lie products given by

t+ t− tz u+ u− v+ v− y
t+ 0 2tz −t+ v+ 0 0 −u− 0
t− −2tz 0 t− 0 −v− u+ 0 0
tz t+ −t− 0 − 1

2u+
1
2u−

1
2v+ − 1

2v− 0
u+ −v+ 0 1

2u+ 0 3
2y − tz 0 t− −u+

u− 0 v− − 1
2u− − 3

2y + tz 0 −t− 0 u−
v+ 0 −u+ − 1

2v+ 0 t− 0 3
2y + tz −v+

v− u− 0 1
2v− −t− 0 − 3

2y − tz 0 v−
y 0 0 0 u+ −u− v+ −v− 0

(95)
You know everything about su (3) from this table. Here, let us briefly state the
motivation for studying su (3), or any algebra for that matter.

Suppose that a physical system is theoretically described by some internal17

coordinates as well as coordinates in space-time. Further suppose that there
are three internal coordinates and an SU (3) transformation in the internal
space does not change the Physics of the system ⇒SU (3) is a symmetry of
the system. Now suppose that a physical object associated with this system
has n-components and an SU (3) transformation in the internal space leads to
a change of values of these components. Therefore, we need to figure out how
n-component objects change when we effect an SU (3) transformation. In other
words, we have to look for representations of SU (3). We are doing this because
we assume SU (3) is an exact symmetry of the system under consideration. We
will soon see that SU (3) is an approximate symmetry of nature.

Upshot : we will now look for representations of su (3) or SU (3).

1. The trivial representation : Let all the generators map to the real number
0. The vector space on which this representation is defined is R. Lin-
ear transformations on R is nothing but multiplication by numbers. All
the generators mapping onto 0 implies that all the group elements map
on to e0 = 1. This is obviously a representation but is trivial. Every
group/algebra has this representation.

2. The Adjoint representation : This is another representation that every Lie
algebra has. A representation of SU (3) is, by definition, a homomorphic
map from the group SU (3) to invertible linear transformations on a vector
space V . In what we discussed so far, we have already seen a vector space –
the Lie algebra itself! su (3) is an 8-dimensional vector space at heart. The
adjoint representation of su (3), defined in the following way, is therefore

17As an example of internal coordinates, let’s think of a system described by a Lagrangian
which is made out of two scalar fields φ1, φ2 and their spacetime derivatives. One solves for
the field configurations φ1,2 that satisfy the equations of motion derived from the Lagrangian.
Further assume that a general field configuration satisfying the e.o.m is of the form αφ01 +βφ02
for arbitrary numbers α, β. Then we say that α, β are coordinates of this system in the
“internal” space that is spanned by the particular fields φ01, φ

0
2.
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an 8-dimensional representation on the vector space su (3).

∀x ∈ su (3) , x 7→ ad (x) : ∀y ∈ su (3) , ad (x) (y) ≡ [x, y] (96)

Evidently, ad (x) is a linear transformation on su (3) because the Lie prod-
uct is bilinear.

ad (x) {ay + bz} = a {ad (x) (y)}+ b {ad (x) (z)} ,∀x, y, z ∈ su (3) (97)

ad (x), being a linear transformation, can be expressed in the matrix form.
The Lie algebra of the operators ad (x) have the natural Lie product –
matrix commutators. Whenever we write [ad (x) , ad (y)], it is understood
that this is a commutator and is also the Lie product. We need to check
that the map x 7→ ad (x) is a homomorphism, i.e., structure preserving

[ad (x) , ad (y)] (z) = [ad (x) ad (y)− ad (y) ad (x)] (z) = ad (x) [y, z]−ad (y) [x, z]

= [x, [y, z]]− [y, [x, z]] = [x, [y, z]] + [y, [z, x]] = − [z, [x, y]] = [[x, y] , z]

= ad ([x, y]) (z) (98)

In the second line we have used two properties of the Lie bracket – an-
tisymmetry and the Jacobi identity. Since the above holds ∀z ∈ su (3),
therefore the operators are equal :

[ad (x) , ad (y)] = ad ([x, y]) (99)

Hence the map is structure preserving. In establishing the adjoint repre-
sentation above, we have only used the general properties of Lie brackets
and not any property particular to su (3). This tells us that every Lie
algebra has an adjoint representation.
Everything about the adjoint operator ad (x) corresponding to an arbi-
trary element x of the Lie algebra su (3) will be known if we know the ad-
joint operators ad (ti) corresponding to a set of basis vectors ti of su (3).
This is how : let x = αiti. Then, for arbitrary y ∈ su (3) such that
y = βjtj , ad (x) (y) = [x, y] = [αiti, βjtj ] = αiβj [ti, tj ] = αiβjad (ti) (tj).
Therefore, due to bilinearity of Lie products, all we need to know is the
action of ad (ti) on arbitrary tj . This information is provided in table (95).
Let us work out the matrix form of ad (t+) with respect to the ordered
basis {t+, t−, tz, u+, u−, v+, v−, y}:

ad (t+) =



0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(100)
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Let us now notice something interesting that happens, of course not by
accident :

ad (tz) (t+) = t+ ad (y) (t+) = 0
ad (tz) (t−) = −t− ad (y) (t−) = 0
ad (tz) (tz) = 0 ad (y) (tz) = 0

ad (tz) (u+) = − 1
2u+ ad (y) (u+) = u+

ad (tz) (u−) = 1
2u− ad (y) (u−) = −u−

ad (tz) (v+) = − 1
2v+ ad (y) (v+) = −v+

ad (tz) (v−) = 1
2v− ad (y) (v−) = v−

ad (tz) (y) = 0 ad (y) (y) = 0

(101)

That is, the basis vectors t+, t−, tz, u+, u−, v+, v−, y are simultaneous eigen-
vectors of ad (tz) and ad (y). tz and y commute, therefore so do ad (tz)
and ad (y). That implies that ad (tz) and ad (y) can be simultaneously di-
agonalized. In the chosen basis, we see that simultaneous diagonalization
of ad (tz) and ad (y) has been achieved. In an arbitrary representation of
su (3), we can choose simultaneous eigenvectors of tz and y as the basis
of the vector space. The basis states will then be labeled by the tz and
y eigenvalues (a, b), say. Now, the commutations in equation (101) tell
us how on application of the various generators t+, t−, u+, u−, v+, v− on
a state with eigenvalues (a, b) we obtain states with shifted eigenvalues(
a

′
, b

′
)

. Therefore the operators t+, t−, u+, u−, v+, v− are called shift

operators. In a diagram where we plot the eigenvalues of tz and y of the
simultaneous eigenstates, the effect of application of the shift operators
are visually depicted in a nice fashion.

Let us quickly lay down the steps for what we are going to do tomorrow.

Killing Form :

Killing form on a Lie algebra L is a map g : L × L → F , where F is the field
over which L is a vector space, defined in the following way :

g (a, b) ≡ (a, b) ≡ gab = Tr [ad (a) ad (b)] (102)

gab is clearly symmetric in a, b because of cyclicity of trace. It is like an inner
product but not quite. The field F is either R or C for almost all the cases of
interest to us.
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Cartan Subalgebra :

The maximal Abelian subalgebra of a Lie algebra is is called its Cartan subal-
gebra.

We will define tomorrow what a subalgebra is.

3.3 Lecture 9 : January 21, 2016

We will start with a few definitions.

Subalgebra :

M is a subalgebra of a Lie algebra L if it is a subspace of L and ∀x, y ∈ M,
[x, y] ∈M.

Recall the connection between Lie groups and Lie algebras. If x, y ∈some
Lie algebra then eix, eiy ∈the associated Lie group. Let eM denote the set of
elements of the Lie group that are generated by the elements of the subalgebra
M. For x, y ∈M, eix.eiy ∈ eM, because commutator of x, y is inM. Therefore,
M being a subalgebra of the Lie algebra L ⇒eM is a subgroup of the Lie group
eL.

Normal Subgroup :

A subgroup N of a group G is said to be a normal subgroup of G, denoted
N C G, if gNg−1 = N ∀g ∈ G.

Suppose N C G, where G is a Lie group. Let N be the subset of the Lie
algebra L of G, elements of which generate elements of N . N is a subalgebra
for sure, but it generates a subgroup of G with a special property (N is normal).
Hence, one expects that N will have some special properties as well. It indeed
does, and Lie subalgebras which generate normal subgroups are called Ideals.

Ideal :

I is an ideal of a Lie algebra L if it is a subalgebra of L and obeys the following

∀x ∈ I,∀y ∈ L, [x, y] ∈ I

Every Lie algebra has two trivial ideals – span {0} and L. Ideals generate
normal subgroups in the Lie group. The subgroups generated by span {0} and
L are the trivially normal subgroups {e} and the full Lie group. Ideals are
subalgebras. They can be abelian or non-abelian. span {0}is an abelian ideal
that every Lie algebra has.
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Simple Lie Algebra :

A simple Lie algebra is a Lie algebra which is non-abelian and has no non-trivial
ideal.

Semisimple Lie Algebra :

A Lie algebra is semisimple if it does not contain any non-zero abelian ideals.
Semisimple Lie algebras can be built by taking direct products of simple lie

algebras. The theory of which we are going to scratch the surface is that of
semisimple Lie algebras. Some examples :

• Let L be a Lie algebra and x ∈ L be such that x commutes with all
elements of L. Then span {x} is an ideal.

• su (2) : This does not even have a nontrivial subalgebra. Hence it is
simple.

• su (3) : This does have a subalgebra : span {tz, y}. However, this subalge-
bra is not an ideal. Therefore, su (3) is simple. The subalgebra span {tz, y}
is a Lie algebra in its own right. And this is an abelian algebra. Hence
span {tz, y} is not simple.

• SU (3)×SU (2)×U (1) : The Lie algebra corresponding to this Lie group
is not semisimple. We shall work out the details in one of the assignments.

Killing Form :

Killing form on a Lie algebra L is a map g : L × L → F , where F is the field
over which L is a vector space, defined in the following way :

g (a, b) ≡ (a, b) ≡ gab = Tr [ad (a) ad (b)] (103)

The field F is either R or C for almost all the cases of interest to us. Properties
of the Killing form :

• (a, b) = (b, a) because of cyclicity of trace.

• (a, b+ c) = (a, b)+(a, c) because matrix multiplication is distributive over
addition and trace is additive.

If we also had the property (a, a) ≥ 0, with (a, a) = 0 iff a = 0, then (, ) would
define a nice inner product on the Lie algebra. The Killing form does not have
this property, unfortunately. Tr

(
A†A

)
for complex matrices A and Tr

(
ATA

)
for real matrices A has this property and all the other properties necessary for
qualifying as an inner product.
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Let Xa’s be the generators of a Lie algebra L and [Xa, Xb] = f cabXc. ad (Xa)
is a linear operator on the vector space L which has Xa’s as a set of basis vectors.
In this basis, we can look for the matrix form Da of ad (Xa).

ad (Xa)Xb = (Da)
c
bXc

⇒ (Da)
c
b = f cab (104)

Matrices representing operators ad (Xa) that form the adjoint representation
of L are constructed out of the structure constants. If the generators are all
Hermitian, then their commutators will be anti-Hermitian, in which case the
structure constants will be imaginary. Physicists often prefer real structure
constants and therefore define them as follows :

[Xa, Xb] = if cabXc (105)

Now,
gab = (a, b) = Tr [DaDb] = (Da)

c
d (Db)

d
c = f cadf

d
bc (106)

The structure constants are anti-symmetric in the two lower indices. However,
they are not totally anti-symmetric. We studied two different sets of basis
vectors of su (2). The structure constants obtained with the basis {tx, ty, tz}
did come out to be totally anti-symmetric – εijk. But those obtained with the
basis {t±, tz} were not. In general, therefore, structure constants are not totally
anti-symmetric. But there exists a basis for every Lie algebra for which f cab is
totally anti-symmetric. In that basis, we do not use an upper index and two
lower indices for f cab because all three indices have the same stature. Also, the
Killing form becomes diagonal in that basis.

Basis dependence of structure constants :

Let us choose another set of basis vectors X
′

a, which can be expressed as linear
combinations of the old basis vectors Xi, and of course vice versa :

X
′

a = L iaXi; Xi = LaiX
′

a (107)

where L ia ≡ (L)ai, the (ai)
th

element of the basis transformation matrix L and

Lai ≡
(
L−1

)
ia

=
((
L−1

)T)
ai

. Now,[
X

′

a, X
′

b

]
=
[
L iaXi, L

j
bXj

]
= L iaL

j
b f

k
ij Xk = L iaL

j
b f

k
ij L

c
kX

′

c

⇒ f
′ c
ab = L iaL

j
b f

k
ij L

c
k (108)

In terms of matrices of the operators in the adjoint representation :(
D

′

a

)c
b

= L iaL
j
b (Di)

k
j L

c
k

⇒ D
′

a = L
(
L iaDi

)
L−1 (109)
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Interpreting the nice equation (109) :
(
L iaDi

)
corresponds to the operator X

′

a

in the adjoint representation. Since Di’s are the matrix forms of the operators
in the adjoint representation given that the basis being used is {Xa}, therefore,
X

′

a’s matrix form is precisely
(
L iaDi

)
given the basis {Xa}. This matrix will

change its form if we change the basis from {Xa} to
{
X

′

a

}
via the transformation

L. The effect is the similarity transformation A → LAL−1. In particular,
D

′

a|old basis ≡
(
L iaDi

)
→ L

(
L iaDi

)
L−1 ≡ D′

a|new basis. Given this,

g
′

ab = Tr
(
D

′

aD
′

b

)
= Tr

(
L
(
L iaDi

) (
L jbDj

)
L−1

)
= Tr

((
L iaDi

) (
L jbDj

))
from cycility of trace

= L iaL
j
b Tr (DiDj) = L iaL

j
b gij (110)

We can think of gab as being elements of a matrix g. Thus,

g
′

= LgLT (111)

Since g is a symmetric matrix, it can be orthogonally diagonalized. Hence, we
can find a matrix L such that LgLT is a diagonal matrix. Using this matrix L
to find the new set of bases therefore renders the new Killing form g

′
diagonal.

With such a choice of basis, let

g =

 λ1

. . .
0

0 λn

 (112)

An interesting result : the basis in which g is diagonal is the one in which the
structure constants become totally antisymmetric. In this basis, all the three
indices of f c

ab are written downstairs – fabc. A further basis transformation

(scaling) such as Xi → X
′

i = 1√
|λi|

Xi (where i is such that λi 6= 0) turns all the

non-zero diagonal elements into +1 or −1. The corresponding transformation
matrix would be

L =


1√
|λ1|

. . .
0

0 1√
|λn|

 (113)

Some of the eigenvalues λi may be zero.

Theorem :

A Lie algebra is semisimple iff g has no vanishing eigenvalues.
We shall probably do half the proof in one of the assignments. The full proof

is quite involved.
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4 Week 4

4.1 Lecture 10 : January 25, 2016

The following is the conventional choice of generators for su (3) :

λ1

2
7→ t1,

λ2

2
7→ t2,

λ3

2
7→ t3,

λ4

2
7→ v1,

λ5

2
7→ v2

λ6

2
7→ u1,

λ7

2
7→ u2,

λ8

2
7→
√

3

2
y ≡ m (114)

The last generator m is defined this way because this leads to a nicer symmetry
in the weight diagrams. We shall soon explain what that means. With this
definition of generators, we can check (from the explicit forms of the Gell-Mann
matrices), that the first three generators satisfy [ti, tj ] = iεijktk. This is a
subalgebra of su (3) isomorphic to su (2). Define

t± = t1 ± it2
u± = u1 ± iu2

v± = v1 ± iv2

(115)

Now we look for irreps of su (3). Let the operators in an irrep of su (3) be
denoted by capital Latin alphabets T,U, V,M etc. [t3,m] = 0 ⇒ [T3,M ] = 0.
Thus, simultaneous eigenstates of T3 andM exist. We choose these simultaneous
eigenstates as basis vectors. For notational brevity, define

~G = (T3,M) (116)

with eigenvalues ~g ≡ (t3,m), also known as weights. Let the simultaneous
eigenvectors be denoted by |α,~g〉 :

~G|α,~g〉 = ~g|α,~g〉 (117)

where α denotes the additional label(s) that may be required to identify the
states. In this notation,[

~G, T±

]
= ±~tT± ~t = (1, 0)[

~G,U±

]
= ±~uU± ~u =

(
− 1

2 ,
√

3
2

)[
~G, V±

]
= ±~vV± ~v =

(
− 1

2 ,−
√

3
2

) (118)

The vectors ~t, ~u,~v are called root vectors or simply roots. Notice that roots
are all unit vectors and satisfy

~t+ ~u+ ~v = 0 (119)

This is a consequence of defining m (or M) the way did. Without the factor of√
3

2 in the definition
√

3
2 y ≡ m, ~u,~v would not be unit vectors.
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The commutation relations in (118) imply

T±|α,~g〉, if non-zero, has weight ~g ± ~t
U±|α,~g〉, if non-zero, has weight ~g ± ~u
V±|α,~g〉, if non-zero, has weight ~g ± ~v

(120)

Therefore, if we have one state with weight ~g, we are going to have six more
states with “shifted weights” ~g±~t,~g±~u,~g±~v unless one or more of these “shifted
states” happen to vanish. If we plot the weights of the states of an irrep on a
plane with eigenvalues of T3 and M plotted along the x and y axes respectively,
we get what is called the weight diagram of the irrep.

The discussion above tells us that weight diagrams of irreps of su (3) have a
regular hexagonal symmetry. Again note that, the symmetry is regular because
the roots are all unit vectors, which is a consequence of the peculiar definition of
m. Now, if we are looking for finite dimensional irreps, we cannot have infinitely
many states. Therefore, the weight diagram of a finite dimensional irrep cannot
be an infinite hexagonal lattice – it must have boundaries/edges.

Ordering of the weights :

In irreps of su (2), the eigenstates of T3 are chosen as basis vectors. That is,
every basis state is labeled by the eigenvalue of one operator because no two
linearly independent su (2) generators commute. As a result, the weights in
su (2) are just numbers, and the weight diagrams are composed of points lying
on a line – the T3 axis. The T3 eigenvalues, or weights, can be compared and
we have one state with the maximum weight for a given irrep. This is the
so called highest-weight state. In su (3), however, weight diagrams are two
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dimensional, and points in 2-d do not have a natural order defined on them –
one cannot simply say (x1, y1) > (x2, y2) without first defining what one means
by saying one point on a 2-plane is larger than another. So, we define what is
known as the dictionary order :

(x1, y1) > (x2, y2) iff either y1 > y2 or y1 = y2 AND x1 > x2 (121)

Given two words in a dictionary, we first compare the first letter. The word
which has a “smaller” first letter (that is, its first letter appears sooner in the
alphabet than the first letter of the other word does) is “smaller” (that is,
appears sooner in the dictionary). If the first letters match, then we compare
the second letter and so on. This is exactly what we are doing here. Given two
states, we first compare their M eigenvalues first, and then T3 eigenvalues. This
defines an order and we can find the highest weight state of an irrep of su (3)
unambiguously – climb vertically to reach the highest M eigenvalue, and then
keeping the M eigenvalue fixed, go to your extreme right to find the highest
weight state. We shall use this order as a convention. One might define another
unambiguous order and work with that convention consistently.

Let the highest weight, according to dictionary order, be ~gmax and the18

highest weight state |α,~gmax〉. Since T+, U+ both increase at least one of the
eigenvalues of T3 and M , therefore

T+|α,~gmax〉 = 0
U+|α,~gmax〉 = 0

(122)

V+ need not kill |α,~gmax〉 since V− lowers eigenvalues of both T3 and M . But,
V−|α,~gmax〉 = 0.

Equation (118) gives the commutation relations between ~G and the shift
operators. We would also need to know commutation relations between the
various shift operators. These can be derived very easily using (118), and some
clever tricks. Of course these can also be figured out from the commutation
relations of the Gell-Mann λ matrices which are the generators (modulo scaling)
in the defining or fundamental19 representation of su (3). But the tricks we are
going to learn will probably enhance our familiarity with the structure of the Lie
algebra and teach us newer (and sometimes more beautiful) methods to solve
problems.

Commutations [T+, T−] , [U+, U−] , [V+, V−] :

Start by noticing that, in the basis {Xa}8a=1 ≡ {Tx, Ty, Tz, Ux, Uy, Vx, Vy,M} of
our choice,

Tr (ad (Xa) .ad (Xb)) = kδab (123)

18For an irrep, the highest weight state will not have any degeneracy, as we will soon prove.
Hence we can talk about “the” highest weight state.

19su (3) is by definition the algebra of generators of SU (3) matrices. This is a concrete
example of a Lie algebra. These are 3× 3 matrices, and therefore can be thought of as linear
operators on the vector space of 3× 1 column vectors. On this vector space, su (3) is its own
representation. This is called the fundamental representation of su (3).
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where k is a fixed number ∀a, b and δab is the Kronecker delta. The num-
ber k can be easily found by direct computation, but we won’t need its value.
We will only use the fact that Tr (ad (Xi) .ad (Xi)) = Tr (ad (Xj) .ad (Xj)),
for all pairs i, j, with no summation implied on eiher side, which is a consequence
of our careful scaling of the basis vectors. In particular,

Tr (ad (T+) .ad (T−)) = Tr (ad (Tx) ad (Tx) + ad (Ty) ad (Ty) + iad (Ty) ad (Tx)− iad (Tx) ad (Ty))

= 2k (124)

With this in mind, let’s compute [T+, T−]:

Jacobi identity⇒ [A, [B,C]] = [B, [A,C]] + [[A,B] , C]

⇒
[
~G, [T+, T−]

]
=
[
T+,

[
~G, T−

]]
+
[[
~G, T+

]
, T−

]
= −~t [T+, T−] + ~t [T+, T−] = 0

Since [T+, T−] commutes with ~G, therefore it commutes with all elements of
the Cartan subalgebra C ≡ span {T3,M}. Therefore, [T+, T−] must also be a
member of C. Thus,

[T+, T−] = αiGi ( = α1T3 + α2M) (125)

⇒ ad ([T+, T−]) .ad (Gj) = αiad (Gi) .ad (Gj)

⇒ Tr (ad ([T+, T−]) .ad (Gj)) = αiTr (ad (Gi) .ad (Gj)) = αikδij , from (123)

⇒ Tr ([ad (T+) , ad (T−)] .ad (Gj)) = αjk, since ad ([T+, T−]) = [ad (T+) , ad (T−)]

⇒ Tr ([ad (Gj) , ad (T+)] .ad (T−)) = kαj (126)

where we have used the fact that Tr ([A,B] .C) = Tr ([C,A] .B) for three ma-
trices A,B,C. This can be easily proved using cyclicity of trace. Now,

[Gj , T+] = tjT+ ⇒ [ad (Gj) , ad (T+)] = ad ([Gj , T+]) = tjad (T+)

Therefore, equation (126) implies

tjTr (ad (T+) .ad (T−)) = kαj

Now, (124) implies
2ktj = kαj ⇒ 2tj = αj (127)

Thus, [T+, T−] = αiGi = 2tiGi. Similarly we can find [U+, U−] and [V+, V−].

[T+, T−] = 2~t. ~G

[U+, U−] = 2~u. ~G

[V+, V−] = 2~v. ~G

(128)
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Commutations [T+, U±] and the like :

Adjoint representation of su (3) is 8-dimensional. Hence, the two components of

ad
(
~G
)

are operators on an eight dimensional vector space. We note that ad
(
~G
)

has precisely 8 eigenvalues corresponding to 8 linearly independent eigenvectors
:

ad
(
~G
)

: T3 7→
[
~G, T3

]
= 0

M 7→
[
~G,M

]
= 0

T+ 7→
[
~G, T+

]
= ~tT+

T− 7→
[
~G, T−

]
= −~tT−

U+ 7→
[
~G,U+

]
= ~uU+

U− 7→
[
~G,U−

]
= −~uU−

V+ 7→
[
~G, V+

]
= ~vV+

V− 7→
[
~G, V−

]
= −~vV−

(129)

Hence, the eight eigenvalues of ad
(
~G
)

are 0, 0,±~t,±~u,±~v. There can be no

other eigenvalues of ad
(
~G
)

since it is a linear operator on an eight dimensional

space. With this is mind, let’s compute [T+, U−] using a trick.

ad
(
~G
)

([T+, U−]) =
[
~G, [T+, U−]

]
=
[[
~G, T+

]
, U−

]
+
[
T+,

[
~G,U−

]]
⇒ ad

(
~G
)

([T+, U−]) =
(
~t− ~u

)
[T+, U−] (130)

That is, [T+, U−], if non-zero, is an eigenvector of ad
(
~G
)

with eigenvalue(
~t− ~u

)
! But,

(
~t− ~u

)
is not one of the eigenvalues of ad

(
~G
)

. Therefore, the

only way in which equation (130) can be true is [T+, U−] = 0. This way, one
can show that

[T±, U∓] = [U±, V∓] = [V±, T∓] = 0 (131)

Now we will employ the same kind of trick to compute [T+, U+].[
~G, [T+, U+]

]
=
[
T+,

[
~G,U+

]]
+
[[
~G, T+

]
, U+

]
=
(
~t+ ~u

)
[T+, U+] = −~v [T+, U+]

Now, −~v is an eigenvalue of ad
(
~G
)

and the corresponding eigenvectors are

proportional to V−. Hence, we can conclude that

[T+, U+] = ξV− (132)

This is all we can say about the commutator [T+, U+] using just the information

about eigenvalues and eigenvectors of ad
(
~G
)

. The proportionality factor ξ has

42



to be figured out by explicit calculation and it turns out to be 1. Similar
commutation relations are the following : [T−, U−] , [U±, V±] , [V±, T±]. In the
equation below, I am summarizing all the non-zero commutators for su (3):[

~G, T±

]
= ±~tT±[

~G,U±

]
= ±~uU±[

~G, V±

]
= ±~vV±

[T+, T−] = 2~t. ~G

[U+, U−] = 2~u. ~G

[V+, V−] = 2~v. ~G
[T±, U±] = ±V±
[U±, V±] = ±T±
[V±, T±] = ±U±

(133)

4.2 Lecture 11 : January 27, 2016

At the outset, let me give an overview by stating facts without proof, so that you
understand the motivation behind the calculations we are going to perform soon.
Today we are going to discuss su (3) super-multiplets or the set of eigenstates
in an irrep of su (3). The eigenvalues corresponding to these states are plotted
in the weight diagrams. We have already seen that su (3) has as its subalgebra
su (2). In our conventional basis, span {Tx, Ty, Tz} is a subalgebra isomorphic to

su (2). Also, span
{
Ux, Uy, ~u. ~G

}
, span

{
Vx, Vy, ~v. ~G

}
are two other subalgebras,

both isomorphic to su (2). In a given irrep of su (3), of dimension m, say, there
will be m states. We will soon see that, some of these m states will span an
invariant subspace20 for the elements of the subalgebra span {Tx, Ty, Tz}. In
fact, all the states belong to at least one such invariant subspace - invariant
with respect to actions of elements of span {Tx, Ty, Tz}. The states belonging
to one such invariant subspace form what is called an su (2) multiplet. These
different T -multiplets do not mix under the actions of Tx,y,z. They do mix
under the actions of U and V operators though. These T -multiplets make up
the whole of the su (3) representation, that is why the set of all states is called
a super-multiplet of su (3). There is nothing special about the T operators –

span
{
Ux, Uy, ~u. ~G

}
, span

{
Vx, Vy, ~v. ~G

}
are also isomorphic to su (2). Therefore,

su (3) super-multiplets can also be partitioned into U -multiplets or V -multiplets
equivalently.

20Note that this invariant subspace I am talking about is not an invariant subspace of
all elements of the algebra. Had that been the case, then the representation would become
reducible!
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In the brief discussion following equation (120) we learned that, given one
state |α,~g〉 with weight ~g of an irrep, we immediately get six more (shifted)
states T±|α,~g〉, U±|α,~g〉, V±|α,~g〉 with weights

(
~g ± ~t

)
, (~g ± ~u) , (~g ± ~v) respec-

tively. Since we are looking for finite dimensional irreps of su (3), the weight
diagrams will have edges. For a state on one of the edges, some of these shifted
states will vanish. Let us look more closely at the symmetries of the weight
diagrams.

Weyl Symmetry :

We start by defining three new unitary operators

P~t = e−iπT2

P~u = e−iπU2

P~v = e−iπV2

(134)

Using Baker-Hausdorff lemma, one can explicitly calculate the operator P−1
~t

~GP~t
(and also P−1

~u
~GP~u,P−1

~v
~GP~v). For your convenience, let me state the lemma here

:

eABe−A =

∞∑
n=0

[A,B]n
n!

(135)

where the symbol [A,B]n is defined recursively as follows

[A,B]n =
[
A, [A,B]n−1

]
with [A,B]o ≡ B (136)

In the language of operators in the adjoint representation,

eABe−1 = ead(A)B (137)

Equation (137) is neater and much more economical. We state the result without
proof :

P−1
~t

~GP~t = P−1
~t

(T3,M)P~t = (−T3,M) (138)

An alternative form which is going to be more illuminating for us is the following
:

P−1
~t

~GP~t = ~G− 2~t
(
~t. ~G
)

P−1
~u

~GP~u = ~G− 2~u
(
~u. ~G

)
P−1
~v

~GP~v = ~G− 2~v
(
~v. ~G

) (139)

Let us now see why these operators are useful. Suppose, ~G|α,~g〉 = ~g|α,~g〉.
Then,

~GP~t|α,~g〉 = P~t

(
P−1
~t

~GP~t

)
|α,~g〉 = P~t

(
~G− 2~t

(
~t. ~G
))
|α,~g〉

=
(
~g − 2~t

(
~t.~g
))
|α,~g〉 (140)
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That is, P~t|α,~g〉 is either zero or is another eigenvector of ~G with weight(
~g − 2~t

(
~t.~g
))

. However, P~t being a unitary operator cannot change the norm
of a state. Since |α,~g〉 is a non-zero state to begin with, therefore P~t|α,~g〉 can-

not be zero. Similarly, P~u|α,~g〉, P~v|α,~g〉 are eigenstates of ~G with respective
weights (~g − 2~u (~u.~g)) and (~g − 2~v (~v.~g)). Now, ~t, ~u,~v are all unit vectors on a

2-plane. Suppose ~A is an arbitrary vector on a 2-plane and î is an arbitrary
unit vector on the same plane. Then ~A = ~A⊥ + ~A‖ where ~A⊥ and ~A‖ are pro-

jections of ~A perpendicular and parallel to î. Clearly, ~A‖ = î
(
î. ~A
)

. Therefore,

~A− 2̂i
(
î. ~A
)

= ~A⊥− ~A‖, which is the vector obtained by reflecting ~A about the

axis perpendicular to î.

This tells us that, if a given weight ~g in the (T3,M) plane is reflected about
the line perpendicular to ~t (this is the M -axis) and going through the origin,
the line perpendicular to ~u and going through the origin (call this ~u⊥), and the
line perpendicular to ~v and going through the origin (call this ~v⊥), we get three
more weights. This implies that the weight diagram is symmetric about the
lines ~t⊥(≡ unit vector along the M axis), ~u⊥, ~v⊥. This is known as the Weyl
symmetry. Notice that

P 2
~t

= P 2
~u = P 2

~v = I (141)

which is consistent with P~t,~u,~v being reflection operators. Also, if a weight ~g is

located on one of the lines of symmetry, namely the lines along ~t⊥, ~u⊥, ~v⊥,
then it is its own reflection about that line. Using these pieces of information,
we shall construct the shapes of the weight diagrams of a super-multiplet and
their various properties.

Exercise : Show that, eiθT2 (T3,M) e−iθT2 = ((cos θ)T3 + (i sin θ)T1,M).

Building and characterizing an su (3) super-multiplet step by step :

• Let |α,~gmax〉 be the highest weight state belonging to an irrep of su (3).
We are using the dictionary order for the weights, which is almost uni-
versally used. We shall assume that |α,~gmax〉 is non-degenerate. Had
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it been doubly degenerate, say, then we could orthogonalize the two lin-
early independent states with weight ~gmax by the Gram-Schmidt process.
The various shift operators then would act on the two orthogonal, high-
est weight, states (denote them by |1〉, |1′〉) to produce a bunch of states.
However, it would turn out that the states obtained from |1〉 would form
an invariant subspace under the action of all su (3) operators. So would
the states obtained from |1′〉. Thus, we would end up with two copies of
the same irrep direct summed with each other, which serves no useful pur-
pose. Therefore, we choose to work with non-degenerate highest weight
states.

• The highest weight state has a P~t partner – a state whose weight is ob-
tained by reflecting ~gmax about the M axis – call it |α,~gpartnermax 〉. And
since there is no state whose weight lies to the right of ~gmax (i.e., with T3

eigenvalue greater than that of |α,~gmax〉 and M eigenvalue equal to that
of |α,~gmax〉), there will be no state to the left of |α,~gpartnermax 〉.

T+|α,~gmax〉 = 0 = U+|α,~gmax〉 ⇒ T−|α,~gpartnermax 〉 = 0

However, unless ~gmax lies on the line along ~u⊥, U−|α,~gmax〉 6= 0. One can
reach |α,~gpartnermax 〉 by starting from |α,~gmax〉 and applying on it T− re-
peatedly until T−|α,~gpartnermax 〉 = 0. This set of states between |α,~gpartnermax 〉
and |α,~gmax〉, including the two, form the top boundary, or the “roof”,
of the weight diagram and their weights lie on the straight line M = m.
There cannot lie any weight above this line because otherwise that weight
would be the highest weight and not (t3,m).

• The states obtained by repeated actions of U−starting from |α,~gmax〉 will
lie on the line along −~u. Of course this string of states has to end some-
where down the line (i.e., (U−)

q |α,~gmax〉 = 0 for some q ∈W21) since we
are looking for a finite dimensional irrep. I claim that these states will
form another boundary of the weight diagram. We already know that T+

kills |α,~gmax〉. However, it requires proof that T+ also kills all the states
obtained by repeated application of U− on |α,~gmax〉. In fact, this is a
general result for all the boundaries/edges of the weight diagram.

21W = N ∪ {0}
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• The boundaries/edges of a weight diagram have to be straight lines.
We established that the top boundary or the “roof” of the weight diagram
has to be a straight line. We will now prove that the edge labeled by #1
in the diagram below also has to be a straight line. That is, all the states
lying on #1 are killed by T+– in other words, #1 is not jagged.

Let |a〉 be a state on #1 that gets killed by T+ : T+|a〉 = 0. At least one
such state exists – |α,~gmax〉. Let |b〉 = U−|a〉. Now,

T+|b〉 = T+U−|a〉 = U−T+|a〉 = 0

because [T+, U−] = 0. Hence the proof. This easily extends to all the
edges. Therefore, the boundary of a weight diagram will be a closed poly-
gon. The three lines of symmetry ensure that this polygon is a hexagon in
general. A special case is when ~gmax lies on one of the lines of symmetry in
which case the boundary of the diagram becomes triangular. When ~gmax
lies on the point of intersection of ~t⊥, ~u⊥, ~v⊥(all of them pass through the
origin), clearly ~gmax = (0, 0) and we have no other state in the irrep.

• Degeneracies : The next question to address is the following. We agreed to
start with a non-degenerate highest weight state. Starting from|α,~gmax〉,
one gets all the states in the irrep by actions of various shift operators.
In particular, we get all the boundary states starting from |α,~gmax〉. Are
these boundary states degenerate? Let us examine this for the states on
#1. Suppose |a〉 be non-degenerate22. Now, the two states |b′〉 ≡ U−|a〉

22Again, at least one such state exists – |α,~gmax〉
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and |b′〉 ≡ T+V+|a〉 have the same weights.

[T+, V+] = −U− implies

|b
′
〉 = T+V+|a〉 = (V+T+ − U−) |a〉 = −U−|a〉 = −|b〉

Hence, |b〉 and |b′〉 are linearly dependent. Note that, there are many
more ways to get from |a〉 to a state whose weight is equal to that of |b〉.
Without providing a more general proof, we state that all these apparently
different ways give rise to the same state modulo an overall phase which is
physically irrelevant. So, our conclusion is the following : Boundary states
have no degeneracy. How about the inner states (meaning states whose
weights lie not on but inside the boundary)? Again, without a proof, let us
state the result : Boundary states of a weight diagram are non-degenerate.
If the boundary is hexagonal, then the next inner layer of states will have
two-fold degeneracy. In subsequent inner layers, the degeneracy count will
keep on increasing by 1 until the first triangular layer of states is reached.
Once the first triangular layer, call it 41, is reached, then the subsequent
inner layers will have the same degeneracy as 41. That is, degeneracy
count will not increase any more. The layers of states inside 41 are all
triangular, except for the case when the inner-most layer becomes a point.

• Finally, we note that all the boundary states, and in turn the entire super-
multiplet, may be obtained from the highest weight state. Therefore, if
we know ~gmax, we know the entire super-multiplet.

We have skipped a few general proofs because they take a lot of effort and we
are under strict time constraint. If you are interested, you can take a look at
any good textbook on Lie algebra.

4.3 Lecture 12 : January 28, 2016

Yesterday we saw how we obtain the entire super-multiplet from the the highest
weight state using Weyl symmetries. Today we shall work out a few examples
and observe some other special features of the super-multiplets.
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We learned how the knowledge of ~gmax = (t3,m) fixes the entire super-
multiplet. Therefore, we can uniquely label the su (3) irreps by (t3,m), the
highest weight of that irrep. Equivalently, we can label an irrep by a set of
two non-negative integers, (p, q), where p and q are, respectively, the numbers
of times T− and U− can act on |α,~gmax〉 without killing it. The numbers
p, q tell us the perpendicular distances of the point ~gmax from the lines ~t⊥, ~u⊥
respectively. It is an easy problem in coordinate geometry to explicitly solve for

~gmax = ~gmax (p, q)
(p, q) = f (~gmax)

More often than not, the (p, q) labeling is adopted for su (3) super-multiplets.
We shall do the same. Starting from (p, q), one can draw the entire weight
diagram and figure out the degeneracy count of each weight using the rules
stated and partially proved yesterday. Thus, we can calculate the total number
of states, or the dimension D, of a (p, q) super-multiplet. The result is stated
here and left for you to prove in an exercise :

D =
1

2
(p+ 1) (q + 1) (p+ q + 2) (142)

Let us draw the weight diagram for (p, q) = (5, 2), count the states, compute
D using equation (142) and then compare the two results as a sanity check.

In the figure, the layers have been explicitly drawn, and the degeneracy count
of each layer written adjacent to it in red ink. The outer-most layer is hexagonal,
has 21 weights with degeneracy count of 1. The next inner layer is hexagonal,
has 15 weights with degeneracy count of 2. The next inner layer is triangular
(this one is 41, following the nomenclature from yesterday’s class), has 9 states
with degeneracy count of 3. Degeneracy count will not increase inside this
layer. The inner-most layer is a point, i.e., 1 weight with degeneracy count of 3.
Hence, we have a total of 21 + 2 (15) + 3 (9) + 3 (1) = 81 states. Using equation
(142), D = 1

2 (5 + 1) (2 + 1) (5 + 2 + 2) = 81. Consistency checked! So, here we
have an 81 dimensional irrep of su (3). The representative matrices are 81× 81.
However, these matrices are going to be very sparse. Nonetheless, it is much
more convenient to list the actions of the operators on the states instead of
writing down the 81× 81 matrices.
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Notice that (142) is symmetric in p and q. For instance, (2, 1) and (1, 2)
are two irreps of the same dimension, namely 15. These are two irreps of the
same dimension, but they are inequivalent. These two super-multiplets have
the same number of states, but different weight diagrams. That means, the
eigenvalues of T3 and M for these two representations are different. Had these
been equivalent representations, the eigenvalues would be the same in both of
them. This feature is unlike su (2) which had only one (inequivalent) irrep of
every dimension. su (3) does not have an irrep of every dimension and, for some
dimensions, has more than one inequivalent irrep.

Our next program is to study some particular su (3) super-multiplets that
have a great role to play in particle physics.

• (p, q) = (0, 0) :
This is a 1-dimensional representation : D = 1. The only (linearly in-
dependent) state in this irrep sits at the origin of the weight diagram;
its eigenvalues are (t3,m) = (0, 0). This irrep is called the su (3) scalar
representation, since the state does not change23 under the action of
SU (3) transformations.

• (p, q) = (1, 0) :
Here, D = 3. This is often referred to as the 3 representation. The
three states are labeled |1〉, |2〉, |3〉, as depicted in the figure below. In the
context of particle physics, they are often equivalently labeled |u〉, |d〉, |s〉,
the letters being representative of the up, down and the strange quarks.
We will make the connection with particle physics later.

23There is still the provision of a state gaining an overall phase under the action of an SU (3)
transformation, but, overall phases being irrelevant, we choose the SU (3) representative op-
erators to be unity.
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• (p, q) = (0, 1)
Here also, D = 3. This irrep and the previous one are both 3-dimensional
but are certainly inequivalent. One way to see it is that the M eigenvalues
of the states in the previous irrep are 1

2
√

3
, 1

2
√

3
,− 1√

‘3
, whereas those in

this irrep are 1√
3
,− 1

2
√

3
,− 1

2
√

3
. Had these two irreps been equivalent, then

the M eigenvalues would have been exactly the same. This irrep is called
the 3̄ irrep and the states are labeled |1̄〉, |2̄〉, |3̄〉, equivalently24 |ū〉, |d̄〉, |s̄〉
as depicted in the figure above.

• (p, q) = (2, 0)
This has D = 6 and is called the 6 irrep.

• (p, q) = (0, 2)
This is another irrep with D = 6 and is inequivalent to the previous irrep.
It is called the 6̄ irrep.

• (p, q) = (1, 1)

This is the only 8-dimensional irrep of su (3). This is the famous octet of
the eight-fold-way in particle physics. We shall spend some time on it
soon.

24Sometimes you will find texts in which the state |2̄〉 is labeled −|d̄〉. This is a choice
or convention and the physics does not change because of it since overall phase factors are
irrelevant in the description of a physical state.
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We have already seen that su (3) irreps have degenerate states in general. We
need to find a way to distinguish degenerate states. Eigenvalues of T3,M don’t
help. Following what is the standard refuge in quantum mechanics in such
situations, we should find another operator that commutes with both T3 and
M , and has distinct eigenvalues for the states that have the same set of (t3,m)
eigenvalues. We notice that[

T 2, T3

]
= 0 =

[
T 2,M

]
(143)

We can use T 2 eigenvalues to distinguish the degenerate states. Given a weight
diagram, focus on the states belonging to one of the horizontal levels. These
states are connected by T±. Under the actions of the three operators Tx,y,z
and their linear combinations (∼ an su (2) subalgebra of su (3)), these states
form an invariant subspace. Therefore, each horizontal level (corresponding to
a given M eigenvalue) contains su (2) multiplets and can therefore be uniquely
labeled by T 2 and T3 eigenvalues. For states that form a (2t+ 1) irrep of the
su (2) subalgebra, the T 2 eigenvalues will be t (t+ 1)– a standard su (2) result.

Let us illustrate this by an example.

• In the weight diagram above (we have seen this once already), the top-
most horizontal level, corresponding to the highest M eigenvalue, contains
6 weights, each with degeneracy one. All of these 6 states mix under
actions of Tx,y,z. Hence, they form a 6-dimensional irrep of the su (2)
subalgebra. These states have t = 5

2 (so that (2t+ 1) = 6).

• The next horizontal level has 12 states in 7 weights. Two of the weights
lie on the outer boundary of the weight diagram and hence are non-
degenerate. Each of the remaining 5 weights has a two-fold degeneracy.
The state to the extreme right with weight (t3,m), say, when acted upon
by T−, gives rise to a state with weight (t3 − 1,m) which is the second
weight from the right on this horizontal level, and this weight has a de-
generacy count of two. Therefore, starting from the extreme right state,
we get one of the two states that have weight (t3 − 1,m) by application
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of T−. Continuing this way, by repeatedly applying T−, we get a string
of 7 states, one for every weight on this horizontal level, that form a ba-
sis of a 7-dimensional irrep of the su (2) subalgebra. These states have
t = 3, so that (2t+ 1) = 7. Now we have 5 states remaining, each non-
degenerate. Of these, the one on the extreme right has weight (t3 − 1,m).
We assume that this state is orthogonal to the other state that has the
same weight (t3 − 1,m) and belongs to the 7-dimensional irrep that we
just constructed. Now we start from this state, keep on applying T−, and
get a string of 5 states that mix under actions of Tx,y,z. The states thus
obtained are orthogonal to the states that have the same weights but be-
long to the t = 3 irrep on this level. These 5 states have t = 2, so that
(2t+ 1) = 5. Thus we exhaust all the 12 states on this level.

• We continue doing this for all the levels, eventually exhausting the entire
super-multiplet.

Having more or less understood the details of su (3) super-multiplets and their
weight diagrams, we would like to study bigger representations formed by taking
direct products of irreps. In fact, we would be interested in breaking down the
product representations, which are reducible, in terms of their component irreps.
We did the same exercise25 for su (2) and there is no conceptual leap forward
in su (3). However, taking the same approach as in su (2) would result in quite
lengthy and tedious calculations. There is an alternative, geometric way of find-
ing out the dimensions of the component irreps of a product representation. We
shall first illustrate this method for su (2) and then straightforwardly generalize
for su (3). Note, however, that this method only tells us the dimensions of the
invariant subspaces of a bigger space that carries a product representation. It
does not tell us which particular subspaces are invariant. In order to find that
detail, we need to follow the complete Clebsch-Gordan prescription and find the
states that span the invariant subspaces.

su (2) Direct Products and their Decomposition :

Consider taking the direct product of the two su (2) irreps : t = 3 (7-dimensional)
and t = 1 (3-dimensional). The weight diagrams26 of the two irreps would be
the following :

25The Clebsch-Gordan series and decomposition
26su (2) weight diagrams are one dimensional.

53



The states in the two irreps are, respectively, {|3;±3〉, |3;±2〉, |3;±1〉, |3; 0〉} and
{|1;±1〉, |1; 0〉}, where we adopt the familiar su (2) labeling scheme |j;m〉. In the
direct product space, consider the states |3; 2〉⊗|1; 1〉, |3; 2〉⊗|1; 0〉, |3; 2〉⊗|1;−1〉.
These are eigenvalues of the direct product operator T3 ≡ T

(3)
3 ⊗ T

(1)
3 with

respective eigenvalues 3, 2, 1 :

T3 (|3; 2〉 ⊗ |1; 1〉) = 3 (|3; 2〉 ⊗ |1; 1〉)
T3 (|3; 2〉 ⊗ |1; 0〉) = 2 (|3; 2〉 ⊗ |1; 1〉)
T3 (|3; 2〉 ⊗ |1;−1〉) = 1 (|3; 2〉 ⊗ |1; 1〉)

We can depict this in the weight diagram in the following manner. Make a copy,
call it C2, of the weight diagram of the t = 1 irrep and superimpose it on top
of the weight diagram of the t = 3 irrep such that the center of C2 (i.e., the 0
eigenvalue in C2) lies on top of the weight of |3; 2〉 (i.e., the 2 eigenvalue of the
t = 3 irrep). Now do this for all 7 weights of the t = 3 irrep – superimpose a
copy of the weight diagram of the t = 1 irrep on each of them. This gives us
the weights of the states in the product representation.

Evidently, the product representation has states with degeneracy. In an irrep of
su (2), states are never degenerate, so we deduce that the product representation
is reducible and we intend to find the dimensions of the irreps whose direct
sum gives the product representation we have. The state with the highest T3

eigenvalue has to belong to and be the highest state of the irrep with t = 4. This
irrep has 9 states with weights ±4,±3,±2,±1, 0. Suppose that the weights that
have been marked with a single slash in the diagram above correspond to these
states. Having enumerated these weights, we eliminate them from the diagram
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and are left with 12 more states. Among these, the one with the highest T3

eigenvalue has to belong to and be the highest state of the irrep with t = 3.
Once we count the weights of this irrep (marked by double slashes), we are
left with weights (marked with ticks) that have to belong to the irrep with
t = 2. The weight diagram of the product representation, therefore, looks like
the following :

Thus, the direct product of a 7 dimensional irrep and a 3 dimensional irrep of
su (2) is reducible and can be expressed as the direct sum of a 9 dimensional
irrep, a 7 dimensional irrep, and a 5 dimensional irrep. This is the Clebsch-
Gordan decomposition and is often written as

7⊗ 3 = 9⊕ 7⊕ 5 (144)

Notice that, when we copied the weight diagrams of the t = 1 irrep and pasted
them on the weights of the t = 3 irrep, all we were doing was vector addition
in one dimension. The T3 eigenvalue of a product state |j1;m1〉 ⊗ |j2;m2〉 is
the sum of the T3 eigenvalues of |j1;m1〉 and |j2;m2〉. Think of eigenvalues of
T3 being one dimensional vectors. When you add two of them, by the rule of
vector addition, you have to place the tail of one of them on the tip of the other.
That is exactly what we have been doing!

This idea will help us a great deal when we perform the same exercise with
su (3) for which weight diagrams are two dimensional. There, too, T3,M eigen-
values of product states |α,~g1〉 ⊗ |α,~g2〉 are sums of the T3,M eigenvalues of
the states |α,~g1〉 and |α,~g2〉. In other words, the weight ~g of the product state
is simply ~g1 + ~g2 – vector addition! Therefore, in order to find the weights cor-
responding to a direct product representation of two irreps of su (3), we shall
make copies of one of them and superimpose the centers (or zeros) of the copies
on top of each weight of the other irrep. Having thus found all the weights of
the product representation, we shall take the highest weight and treat it as the
highest weight state of one of the component irreps that build the product rep-
resentation. Then we shall enumerate all the weights27 that belong to this irrep
and set them aside. Then we shall take the highest of the remaining weights and
treat it as the highest weight state of another component irrep. We continue
this process until all the weights of the product representation are exhausted.

Let us illustrate this by a few examples.

27If a weight ~g of that irrep has a two-fold degeneracy, say, then two ~g’s from the set of
product weights (in other words, two of the degenerate product states with weight ~g) are
included in that irrep and so on.
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• 3⊗ 3̄ = 8⊕ 1

The weight diagram of the product representation has 6 weights on a
hexagonal boundary and 3 states at the center (0, 0). The 6 boundary
weights and 2 of the (0, 0) weights together form the weight diagram of
the octet which is a component irrep of 3⊗ 3̄. The state corresponding to
the remaining weight (0, 0) forms, by itself, the scalar irrep or the singlet.
FYI, let me make a connection with particle physics here. You shall
probably better understand it when we will have a full-fledged discussion
on elementary particles. Quarks belong to the 3 representation of su (3)
and antiquarks to the 3̄ representation. When we combine a quark and
an antiquark, we get a product state that lives in the 3⊗ 3̄ representation.
This product representation, as we have seen, has 9 states, 8 of which
belong to the octet irrep and the remaining state belongs to the scalar
irrep. In nature, we do find this happening. There are 8 particles, each
consisting of a quark and an antiquark, that have almost the same mass
and mix under su (3) transformations like the states of the octet. There
is also another particle, formed by a quark and an antiquark, that stays
the same under su (3) transformations. We shall learn the names of these
particles later.
Now, where is mass in all this? Notice that we have so far assumed su (3)
to be a symmetry of nature. Because of this, the generators of su (3)
commute with the Hamiltonian H whose eigenvalues give nothing but
mass! This implies that all the eigenstates of T3,M are eigenstates of H
with the same eigenvalue – hence the same mass.

• 3⊗ 3 = 6⊕ 3̄

The diagram explains it, I hope. The product states |a〉 ⊗ |b〉 are simply
denoted by |ab〉, a, b ∈ {1, 2, 3}. Although 3 ⊗ 3 is mathematically as
interesting (or not) as any other product representation, it doesn’t appear
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very often in physics, because we do not have bound states of two quarks.
But we have bound states of three quarks. It would be a nice exercise for
you to derive the following Clebsch-Gordan decomposition

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 (145)

An historical note : In nature, we do see manifestation of the 10 irrep (aka the
decuplet) of su (3). There are 10 particles (baryons), of almost similar masses,
that mix under su (3) transformations. But when Gell-Mann proposed su (3)
as a symmetry of nature, one of these particles was yet to be discovered. Gell-
Mann predicted su (3) being a symmetry, observed that 9 particles have very
similar masses and hypothesized that they belong to an su (3) decuplet. Natu-
rally, he predicted the existence of the 10th which was discovered later. This is
the particle 4++.
Another note : Had su (3) been an exact symmetry of nature, the states be-
longing to a given irrep of su (3) would have the same mass. Also, one would
interpret, in keeping with standard principles of symmetry in quantum mechan-
ics, these states being the states of the same particle. In that case, one would
not say, e.g., that the states in the decuplet are those of 10 different particles.
But su (3) is not an exact symmetry of nature.
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5 Week 5

5.1 Lecture 13 : February 1, 2016

Today we shall start by giving a quick review of su (2) that you typically learn
in non-relativistic quantum mechanics.

We shall borrow all the results from the su (2) algebra of angular momentum.
We learned that, for a given irrep, states are labeled by their J3 eigenvalues. And
different irreps are labeled by their j values; j gives the total angular momentum
of the states : the J2 eigenvalue of all the states of an irrep is j (j + 1). The
ladder operators J± take you between states. Assuming that the usual inner
product is defined, and that the J3 eigenstates |j;m〉 are orthonormalized, we
have

J3|j;m〉 = m|j;m〉
J±|j;m〉 =

√
(j ∓m) (j ±m+ 1)|j;m± 1〉 (146)

We derive the second equation the following way. We suppose that the factor is
N− , a complex number.

J−|j;m〉 = N−|j;m− 1〉

⇒ |N−|2 = 〈j;m|J+J−|j;m〉 = (j +m) (j −m+ 1)

This gives us |N−|, not N−. When we demand that

N− =
√

(j +m) (j −m+ 1) (147)

we are making a choice of phase. We could very well have chosen N− to have
an arbitrary phase factor. Let me elaborate it a little further, because this is
an assumption (valid, but an assumption nonetheless) of extreme importance
and one often takes it for granted. J−, acting on |j;m〉, produces another
eigenstate of J3 with eigenvalue (m− 1). If |ψ〉 is such a state, then so is eiφ|ψ〉.
The state for which φ = 0 is being defined to be |j;m − 1〉. From among
the infinitely many eigenstates of J3 with eigenvalue (m− 1), one for every
choice of phase φ relative to the state |j;m〉, we are choosing to include that
one in the eigenbasis which corresponds to φ = 0, and we name it |j;m − 1〉.
The relative phase between two states is physically significant. That is why,
when we are making these phase choices, we are specializing in choosing the
basis states. Starting with the highest state |j; j〉 (which can have an arbitrary
overall phase that is physically insignificant), we keep on making this choice
so that the relative phases between two successive states is fixed. Note that,
having fixed the relative phase between |j;m〉 and |j;m− 1〉, and that between
|j;m − 1〉 and |j;m − 2〉, the relative phase between |j;m〉 and |j;m − 2〉 get
automatically fixed. The upshot is that the choice of N− being real positive
fixes the relative phases between every pair of states in the eigenbasis we work
with. Having defined the states in the basis, the next question then is, whether
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N+ in J+|j;m〉 = N+|j;m+1〉 is real positive or has a phase. The commutation
relations of the su (2) algebra determines that for you. Fortunately for us, N+

turns out to be real and positive as well. We could do it the other way round.
We could choose N+ to be real and positive and N− would then become real and
positive as a consequence. We provide an example to illustrate why the choice
of N+ also determines N−. Take j = 1

2 , and let the two states be denoted by
|+〉, |−〉. Suppose we choose N+ to be real and positive :

J+|−〉 =

√(
1

2
−
(
−1

2

))(
1

2
+

(
−1

2

)
+ 1

)
|+〉 = |+〉

Now,

J−|+〉 = (|−〉〈−|+ |+〉〈+|) J−|+〉 = |−〉〈−|J−|+〉+ |+〉〈+|J−|+〉

The second term in the sum is 0, because 〈+|J− = (J+|+〉)† = 0. Therefore,

J−|+〉 = (〈−|J−|+〉) |−〉 ≡ α|−〉

The number α is N− and can be determined as follows :

α = 〈−|J−|+〉 = (〈+|J+|−〉)† = (〈+|+〉)† = 1

Now we can claim that we understand (146) fully.
The above analysis is for an su (2) multiplet and we shall extend the ideas

to su (3) now. On an su (3) super-multiplet, states lying on a horizontal line
(fixed M eigenvalue) belong to some su (2) multiplet. That is, they span an
invariant subspace of the subalgebra span {T+, T−, T3} ∼= su (2). Therefore, we
can exercise the freedom of phase choice discussed above and set the relative
phase of the states T±|α, (t3,m)〉 and |α, (t3 ± 1,m)〉 to be 0. This makes the
coefficients N± real and positive as shown above. What makes su (3) differ-
ent from su (2) is the fact that su (3) has two more subalgebras isomorphic to
su (2). States lying on lines parallel to ~u (or, ~v) span invariant subspaces of the

subalgebra span
{
U+, U−, ~u. ~G

}
(or, span

{
V+, V−, ~v. ~G

}
). Therefore, one state

in the su (3) super-multiplet is part of three different su (2) multiplets. Keep-
ing this in mind, let us consider the (p, q) irrep, start with the highest weight
state and label it |1〉 – this is the first state in our ordered eigenbasis. Then
the next state in the ordered basis |2〉 is chosen so that N− is real and positive
in T−|1〉 = N−|2〉. Continuing this way, we label all the states {|1〉, ..., |p+ 1〉}
with the highest M eigenvalue – states on the top-most horizontal line. Unless
q = 0, U−|α,~gmax〉 is the highest state (maximum T3 eigenvalue) in the next
horizontal level. We choose U−|α,~gmax〉 ≡ U−|1〉 to be the next state in the
ordered basis, |p+ 2〉, modulo a real and positive normalization factor. That is,
R− is real and positive in U−|1〉 = R−|p+ 2〉. We can do this because we have
a freedom to choose the relative phase between the two states |1〉 and |p + 2〉.
Then we label all the states on this horizontal level according to the set rules.
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The upshot is this : by exercising the freedom to choose the relative phases of
the states in the eigenbasis, we can make the coefficients R±, N± real and pos-
itive. That is, the T and U multiplets are chosen to follow the simplest su (2)
“ladder” (or “shift”) relations. Once we have done that, the relative phases
between any pair of states in the eigenbasis are fixed. We cannot simplify the
ladder relations corresponding to V± any more. That is, if two states |f〉, |g〉 in
the chosen eigenbasis are such that V−|f〉 = S−|g〉 , then there is no guarantee
that S− will be real (let alone positive). The relative phase between |f〉 and
|g〉 has already been fixed to 0 by choosing to have real and positive values for
R±, N± in the U and T multiplets and there is no reason why V−|f〉 and |g〉
should also have 0 relative phase. These phases will be dictated by the commu-
tation relations of su (3). So, we need to pay close attention to the actions of
the V± shift operators on the chosen ordered eigenbasis.

We have already said that we shall label the states in one horizontal level of
an su (3) weight diagram by their j,m values (we shall use j and t interchange-
ably). For the irreps we will work with, we shall need the following :

• j = 1
2

J+| 12 ; 1
2 〉 = 0

J+| 12 ;− 1
2 〉 = 1.| 12 ; 1

2 〉 ← a phase choice between | 12 ; 1
2 〉, |

1
2 ;− 1

2 〉
J−| 12 ; 1

2 〉 = 1.| 12 ;− 1
2 〉 ← no phase choice, consequence of su (2)

J−| 12 ;− 1
2 〉 = 0

(148)

• j = 1
J−|1; 1〉 =

√
2|1; 0〉 ← phase choice

J−|1; 0〉 =
√

2|1;−1〉 ← phase choice
J−|1;−1〉 = 0
J+|1; 1〉 = 0

J+|1; 0〉 =
√

2|1; 1〉 ← not a phase choice

J+|1;−1〉 =
√

2|1; 0〉 ← not a phase choice

(149)

Now we shall do the same exercise for the 3, 3̄ and 8 irreps of su (3). The
plan is to start from the highest weight state and then make the shift operators
act on it. Just like in su (2), the basis states will be so defined such that the
results of the action of shift operators are as simple as possible – in other words,
relative phases will be chosen to be 0 as far as possible. In what follows, I shall
explicitly indicate whenever an equation has a phase choice involved in it. I
shall also indicate which ones do not involve phase choices and simply follow
from the choices already made and the su (3) algebra.

• The 3 irrep :
To begin with, let us agree that we shall include orthonormal states in
the eigenbasis. But also notice that, if |ψ1〉 and |ψ2〉 are orthonormal,
then so are eiθ1 |ψ1〉 and eiθ2 |ψ2〉. Orthonormality of a set of states does
not uniquely determine everything about the states. Their relative phases
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could still be arbitrarily chosen.

T3 : |1〉 7→ 1
2 |1〉 M : |1〉 7→ 1

2
√

3
|1〉

|2〉 7→ −1
2 |2〉 |2〉 7→ 1

2
√

3
|2〉

|3〉 7→ 0 |3〉 7→ − 1√
3
|3〉

(150)

T− : |1〉 7→ |2〉 ← phase choice T+ : |1〉 7→ 0
|2〉 7→ 0 |2〉 7→ |1〉 ← not a choice
|3〉 7→ 0 |3〉 7→ 0

U− : |1〉 7→ 0 U+ : |1〉 7→ 0
|2〉 7→ |3〉 ← phase choice |2〉 7→ 0

|3〉 7→ 0 |3〉 7→ |2〉 ← not a choice
V− : |1〉 7→ 0 V+ : |1〉 7→ |3〉 ← not a choice

|2〉 7→ 0 |2〉 7→ 0
|3〉 7→ |1〉 ← not a choice |3〉 7→ 0

(151)
It stands to reason that we have only two relative phases that we can
choose since there are three states in this irrep. The rest of the operator
actions, ones indicated with the phrase “not a choice”, are insisted on by
the algebra. Let us show that for one of those relations. Since the relative
phase between |2〉 and |3〉 is fixed by the equation U−|2〉 = |3〉

V−|3〉 = V−U−|2〉 = (U−V− + T+) |2〉 = T+|2〉 = |1〉

Just as we promised! Having fixed the relative phases, we have the freedom
to change the overall phases of all the states by the same amount.

• The 3̄ irrep :

T3 : |1̄〉 7→ −1
2 |1̄〉 M : |1̄〉 7→ − 1

2
√

3
|1̄〉

|2̄〉 7→ 1
2 |2̄〉 |2̄〉 7→ − 1

2
√

3
|2̄〉

|3̄〉 7→ 0 |3̄〉 7→ 1√
3
|3̄〉

(152)
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T− : |1̄〉 7→ 0 T+ : |1̄〉 7→ |2̄〉 ← not a choice
|2̄〉 7→ |1̄〉 ← phase choice |2̄〉 7→ 0

|3̄〉 7→ 0 |3̄〉 7→ 0
U− : |1̄〉 7→ 0 U+ : |1̄〉 7→ 0

|2̄〉 7→ 0 |2̄〉 7→ |3̄〉 ← not a choice
|3̄〉 7→ |2̄〉 ← phase choice |3̄〉 7→ 0

V− : |1̄〉 7→ −|3̄〉 ← not a choice V+ : |1̄〉 7→ 0
|2̄〉 7→ 0 |2̄〉 7→ 0
|3̄〉 7→ 0 |3̄〉 7→ |1̄〉 ← not a choice

(153)
Notice here that V−|1̄〉 7→ −|3̄〉, we have a negative sign and we cannot
avoid it. Let’s see how the negative sign comes about.

V−|1̄〉 = V−T−|2̄〉 = (T−V− − U+) |2̄〉 = −U+|2̄〉 = −|3̄〉

A note : In physics, sometimes one makes a different phase choice between
|1̄〉 and T−|2̄〉 . One chooses T−|2̄〉 = −|1̄〉. This is done because, as a
consequence, a final result appears nicer. But this is a choice of basis after
all and the physics does not depend on it. In both the irreps discussed
above, we have three states and can choose two relative phases as per our
convenience. There is only so much freedom we have. Once we use it up,
we don’t have any freedom left any longer.

• The 8 irrep :

T3 : |1〉 7→ 1
2 |1〉 M : |1〉 7→

√
3

2 |1〉
|2〉 7→ −1

2 |2〉 |2〉 7→
√

3
2 |2〉

|3〉 7→ |3〉 |3〉 7→ 0
|4〉 7→ 0 |4〉 7→ 0
|5〉 7→ −|5〉 |5〉 7→ 0

|6〉 7→ 1
2 |6〉 |6〉 7→ −

√
3

2 |6〉
|7〉 7→ −1

2 |7〉 |7〉 7→ −
√

3
2 |7〉

|8〉 7→ 0 |8〉 7→ 0

(154)

Notice that, although we said we shall be labeling states on a horizontal
level by their t and m values, we have not done that. We could do it,
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of course, but the labels we are using here are simpler. However, we are
going to use the su (2) “ladder” relations in that we will not compute the
factors N± afresh and will borrow the results from what we have already
done in su (2).

T− : |1〉 7→ |2〉 ← phase choice U− : |1〉 7→ |3〉 ← phase choice
|2〉 7→ 0 |2〉 7→ α|4〉+ β|8〉

|3〉 7→
√

2|4〉 ← phase choice |3〉 7→ 0

|4〉 7→
√

2|5〉 ← phase choice |4〉 7→ γ|6〉
|5〉 7→ 0 |5〉 7→ |7〉 ← phase choice

|6〉 7→ |7〉 ← phase choice |6〉 7→ 0
|7〉 7→ 0 |7〉 7→ 0
|8〉 7→ 0 |8〉 7→ δ|6〉

(155)
Notice again, that there are infinitely many states with the weight (0, 0).
But only two of them are linearly independent (since (0, 0) is doubly de-
generate) and we can take one of them to be T−|3〉. We have decided to
label that state as |4〉, modulo the factor

√
2. That is, |3〉, |4〉, |5〉 form

an su (2) triplet (corresponding to T, T±). This justifies the factors of√
2 in their T± ladder relations. The other state with weight (0, 0) is of

course linearly independent of |4〉, and we choose to call it |8〉. However,
since these two states belong to the same degenerate eigenbasis, therefore
|8〉 is not uniquely determined by simply demanding that it be linearly
independent of |4〉. Because, for any such |8〉, |8〉′ = |8〉 + ξ|4〉, ξ 6= 0, is
also linearly independent of |4〉 and has weight (0, 0). We shall be able to
uniquely specify |8〉 when we specify the factor β in

U−|2〉 = α|4〉+ β|8〉, (156)

because, in this equation, the states |2〉 and |4〉 have already been cho-
sen and U− is also a known operator. An immediate observation is the
following : if |ψ〉 is the next normalized state in the U -triplet, then
U−|2〉 =

√
2|ψ〉. Comparing this with (156):

|ψ〉 =
1√
2

(α|4〉+ β|8〉) , (157)

the next normalized state in the U -triplet that has |2〉 as its highest weight
state. The third member of this triplet has to be |6〉. Since neither |4〉 nor
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|8〉 belong to the U -triplet starting with |2〉, therefore γ and δ in (155) are√
2. They are not even guaranteed to be real. Notice that, we have made

6 phase choices in (155), and there are 8 states. Hence, we have leftover
freedom to choose one more relative phase. We could use this to choose
either γ or δ to be real. But we shall not do that. We shall use the phase
freedom to fix the relative phase of |2〉 and |8〉 so that β is real. Therefore,
γ and δ are complex numbers as of now.

5.2 Lecture 14 : February 3, 2016

Today we shall calculate the numbers α, β, γ, δ, exploiting our phase freedom to
the fullest extent so as to make as many of them real and positive as possible.
Recall that the states |1〉, |2〉, ..., |8〉 are orthonormal and that we have used up
6 of the 7 phase choices. Equation (156) implies

α = 〈4|U−|2〉 =
1√
2
〈3|T+U−|2〉

[
∵ T−|3〉 =

√
2|4〉

]
=

1√
2
〈3|U−T+|2〉 =

1√
2
〈3|U−|1〉 =

1√
2
〈3|3〉

∴ α =
1√
2

(158)

Hence, α is real and positive as a consequence of the algebra (and the phase
choices already made). So we still have the freedom to choose one relative phase.
Now, equation (157) from last class told us that 1√

2
(α|4〉+ β|8〉) has a norm of

1. Hence,

|α|2 + |β|2 = 2⇒ |β|2 =
3

2

This implies that β =
√

3
2e
iφ. We shall use our last phase freedom to absorb

the phase factor eiφ in the definition of |8〉. Hence,

β =

√
3

2
(159)

We have used up all the freedom we had and will have to accept whatever values
for γ and δ the algebra throws at us.

U−|4〉 = U−T+

(
1√
2
|5〉
)

= T+U−

(
1√
2
|5〉
)

=
1√
2
T+|7〉 =

1√
2
|6〉

∴ γ =
1√
2

(160)
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Luckily, γ turns out to be real and positive. To compute δ, note that the first
two equations in (149) imply that J−J−|1; 1〉 = 2|1;−1〉. For the U -triplet, |2〉
corresponds to |1; 1〉 and |6〉 corresponds to |1;−1〉. Therefore,

U− (U−|2〉) = U−

(√
1

2
|4〉+

√
3

2
|8〉

)

⇒ 2|6〉 =

√
1

2
U−|4〉+

√
3

2
U−|8〉 =

1

2
|6〉+

√
3

2
δ|6〉

∴ δ =

√
3

2
(161)

δ also turns out to be real and positive! Therefore, we have fixed all the relative
phases in the octet and figured out the following :

T− : |1〉 7→ |2〉 ← phase choice U− : |1〉 7→ |3〉 ← phase choice

|2〉 7→ 0 |2〉 7→
√

1
2 |4〉+

√
3
2 |8〉 ← phase choice

|3〉 7→
√

2|4〉 ← phase choice |3〉 7→ 0

|4〉 7→
√

2|5〉 ← phase choice |4〉 7→
√

1
2 |6〉

|5〉 7→ 0 |5〉 7→ |7〉 ← phase choice
|6〉 7→ |7〉 ← phase choice |6〉 7→ 0

|7〉 7→ 0 |7〉 7→ 0

|8〉 7→ 0 |8〉 7→
√

3
2 |6〉

(162)
You should compute the actions of the rest of the shift operators on the chosen
basis states.

Now that we have chosen a convenient basis for the octet, let us remind
ourselves that, for any vector space, basis is not unique. We encountered the
following Clebsch-Gordan decomposition earlier :

3⊗ 3̄ = 8⊕ 1

The product representation 3⊗ 3̄ has the octet as one of its component irrep. In
the product representation, product states form the natural basis. The natural
question to ask now is whether 8 of these 9 natural basis product states have
one-to-one correspondence with the basis we have chosen for the octet. We
shall find soon that in general the answer is no. The product states lying on the
edges of the weight diagram of 3⊗ 3̄ have a one-to-one correspondence with the
“edge-states” of our chosen basis for the octet, but not the product states with
weight (0, 0). Certain linear combinations of these “center-states” have one-to-
one correspondences with |4〉 and |8〉, as we show below. We shall use the crisp
notation |ab〉, |ab̄〉 for the product states |a〉 ⊗ |b〉, |a〉 ⊗ |b̄〉 etc. We choose eight
linear combinations of the product states that will serve as basis vectors of the
8-dimensional invariant subspace carrying the octet irrep, and label these states
|1〉8, . . . , |8〉8.

65



1. The weight of the product state |13̄〉 is equal to the highest weight of the
octet.

2. The highest weight of the octet is non-degenerate.

3. We have the liberty to arbitrarily choose the overall phase of the first state
|1〉8 of the octet.

Because of these reasons, we can choose

|1〉8 ≡ |13̄〉

We choose a trivial overall phase for convenience, of course. Now, in the octet,
we made use of phase freedom to demand that |2〉8 ≡ T−|1〉8. This gives us

|2〉8 = T−|13̄〉 =
(
T

(3)
− |1〉

)
⊗ |3̄〉+ |1〉 ⊗

(
T

(3̄)
− |3̄〉

)
= |23̄〉

Similarly, |3〉8 = U−|1〉8 gives |3〉8 = U−|13̄〉 = |12̄〉. Continuing this way, one
finds that the edge states of the octet are exactly the product states sitting
on the edge of the product representation. We only need to find which linear
combinations to choose for |4〉8 and |8〉8. That is also easy to find. |4〉8 =
1√
2
T−|3〉8 implies that

|4〉8 =
1√
2
T−|12̄〉 =

|11̄〉+ |22̄〉√
2

.

And, U−|2〉8 =
√

1
2 |4〉8 +

√
3
2 |8〉8 implies that |8〉8 = 1√

3

(√
2U−|2〉8 − |4〉8

)
.

∴ |8〉8 =
1√
3

[√
2 (|33̄〉+ |22̄)− |11̄〉+ |22̄〉√

2

]
=

2|33̄〉+ |22̄〉 − |11̄〉√
6

Therefore,
|1〉8 = |13̄〉 |5〉8 = |21̄〉
|2〉8 = |23̄〉 |6〉8 = |32̄〉
|3〉8 = |12̄〉 |7〉8 = |31̄〉
|4〉8 = |11̄〉+|22̄〉√

2
|8〉8 = 2|33̄〉+|22̄〉−|11̄〉√

6

(163)
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Let us notice in passing that the states we have obtained are all normalized,
which is just as it should be! So, we have found eight linear combinations,

namely
{
|13̄〉, |23̄〉, |12̄〉, |11̄〉+|22̄〉√

2
, |21̄〉, |32̄〉, |31̄〉, 2|33̄〉+|22̄〉−|11̄〉√

6

}
, of the natural

basis states {|11̄〉, |12̄〉, |13̄〉, |21̄〉, |22̄〉, |23̄〉, |31̄〉, |32̄〉, |33̄〉} of the product space
that span an 8-dimensional invariant subspace. This invariant subspace carries
the octet irrep. All we are left with is to find another linear combination of
the basis states |11̄〉, |22̄〉, |33̄〉 that belongs to the singlet, or the 1-dimensional
irrep of su (3). We choose it to be orthogonal to the states of the octet. Let us
denote the singlet state as |1〉1, and let

|1〉1 = α|11̄〉+ β|22̄〉+ γ|33̄〉 (164)

It is easy to see that the singlet state cannot be a linear combination of anything
other than the states |11̄〉, |22̄〉, |33̄〉, because, otherwise, |1〉1 would not have the
desired weight (0, 0). As a consequence, |1〉1 is automatically orthogonal to
|1〉8, |2〉8, |3〉8, |5〉8, |6〉8, |7〉8. Now, demanding orthogonality with |4〉8 and |8〉8
yields

8〈4|1〉1 = α+β√
2

= 0⇒ α = −β
8〈8|1〉1 = 2γ+β−α√

6
= 0⇒ γ = α

Hence, we have α = −β = γ. Normalization requires α = 1√
3
eiθ. Choosing

the simplest phase,

|1〉1 =
|11̄〉 − |22̄〉+ |33̄〉√

3
(165)

This somewhat long exercise shows that 3⊗ 3̄ = 8⊕1, and the basis of the prod-
uct representation 3⊗3̄ in which this Clebsch-Gordan decomposition is explicitly

seen is
{
|13̄〉, |23̄〉, |12̄〉, |11̄〉+|22̄〉√

2
, |21̄〉, |32̄〉, |31̄〉, 2|33̄〉+|22̄〉−|11̄〉√

6
, |11̄〉−|22̄〉+|33̄〉√

3

}
, i.e.,

{|1〉8, |2〉8, |3〉8, |4〉8, |5〉8, |6〉8, |7〉8|8〉8, |1〉1}. Check for yourself that the singlet
state indeed spans an invariant subspace. Computing the Clebsch-Gordan series
for the decomposition 3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1 would be a nice homework
exercise.

Before wrapping up today, let me mention the consequence of the following
“Physics” convention :

Here, the phase convention is that U−|s̄〉 = −|d̄〉. That is, what we have
been calling |2̄〉 so far is being called −|2̄〉 in this convention. The rest of it is
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the same as before. With this convention,

|1〉1 = |uū〉+|dd̄〉+|ss̄〉√
3

|8〉8 = 2|ss̄〉−|dd̄〉−|uū〉√
6

(166)

All the coefficients in the linear combination for |1〉1 become positive. And
the numerators of the coefficients in the linear combination for |8〉8 become
+2,−1,−1, which is a little bit better28 than +2,+1,−1, what we had before.
These coefficients being easier to remember is the reason why physicists often
adopt this phase convention. You might object by saying that this destroys the

niceness of the coefficients elsewhere, for instance, |3〉8 = −|ud̄〉, |4〉8 = |11̄〉−|22̄〉√
2

etc. Then again, you can’t have everything in life! Choose for yourself which
convention is easier for you to remember and stick to it.

5.3 Lecture 15 : February 4, 2016

Symmetry in Quantum Mechanics :

Consider a transformation (unitary) UR of the Hilbert spaceH of a system where
R corresponds to a change of the reference system. Under this transformation,
the states |ψ〉 ∈ H change : |ψ〉 → |ψ′〉 = UR|ψ〉: while the operators A remain
unchanged. As a result, the expectation values of states change in the following
way : 〈A〉|ψ〉 ≡ 〈ψ|A|ψ〉 → 〈ψ|U−1

R AUR|ψ〉. This way of looking at the transfor-
mation in which states change is called the active view. The passive view is an
alternative (and equivalent) way of effecting the same transformation in which
the states are kept fixed and the operators are changed in the following manner
: A → A

′
= U−1

R AUR. Both the approaches bring about the same change in
the expectation values which are the physically important numbers carrying all
the information about the states. Hence, these two views are equivalent.
Now, such a transformation UR is said to be a symmetry of the system if the
Hamiltonian H of the system does not change even according to the passive
view, i.e., if

U−1
R HUR = H ⇐⇒ [H,UR] = 0 (167)

Let us consider a system with rotational symmetry. Therefore, its Hamilto-
nian H must commute with UR corresponding to all rotations R of the coordi-
nate axes. Therefore, R can be a rotation about any axis through any angle.
U : R 7→ UR is a representation of the rotation group on H. The necessary
and sufficient condition for H to commute with all possible UR is that H has to
commute with the generators Ji, i ∈ {1, 2, 3} of the rotation matrices UR:

[H,Ji] = 0; i ∈ {1, 2, 3} (168)

28Better in the sense that this is perhaps easier to remember.
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Even when we do not know the intricate details of the interactions in the system
and, therefore, are ignorant of the exact form of the H, we have at least this
information about H based on its symmetry.

The system of our interest is a particle which has isospin as its symme-
try. Isospin is probably a new term, but we have already seen it. Isospin
operators are nothing but the first three generators T1, T2, T3 of su (3). The
isospin algebra is su (2) which is the same as the rotation algebra so (3). Hence,
[H,Ji] = 0 holds for our system as well. Since H commutes with all the isospin
operators, in particular with J3, we can choose simultaneous eigenvectors of H
and J3 as our basis. For a particle with the total isospin j, the eigenbasis is
{|j; j〉, |j; j − 1〉, . . . , |j;−j〉}.

Now, the Hamiltonian H is the generator of time translation. For very small
time t, the time translation operator is

U = I− iHt (169)

The following inner product is called the transition amplitude for a particle to
transition (evolve in time) from the state |j;m〉 to the state |j′ ;m′〉:

〈j
′
;m

′
|H|j;m〉 (170)

If this vanishes, then transition does not occur between the states |j;m〉 and
|j′ ;m′〉. Otherwise, there is non-zero probability of the transition happening.
We are suddenly interested in the transition amplitudes because these are also
the matrix elements of the Hamiltonian in the chosen eigenbasis. We shall now
show that, for the rotationally symmetric Hamiltonian, the transition amplitude
is zero whenever j 6= j

′
and m 6= m

′
. Not only that, for j = j

′
,m = m

′
, the

non-zero value of the transition amplitude depends only on the value of j and
not on the value of m. This result is wonderful because it is a consequence of the
symmetry of H, not of its explicit form which is unknown to us at the moment.

Since [H,Ji] = 0, therefore
[
H,J2

]
= 0. This implies

〈j
′
;m

′
|
[
H,J2

]
|j;m〉 = 0⇒

(
j (j + 1)− j

′
(
j
′
+ 1
))
〈j

′
;m

′
|H|j;m〉 = 0

Hence, j 6= j
′ ⇒ 〈j′ ;m′ |H|j;m〉 = 0; only non-zero matrix elements are those

with j = j
′
. Also, [H,J3] = 0 implies

〈j
′
;m

′
| [H,J3] |j;m〉 = 0⇒

(
m−m

′
)
〈j

′
;m

′
|H|j;m〉 = 0

Thus, m 6= m
′ ⇒ 〈j′ ;m′ |H|j;m〉 = 0. Therefore, we can write

〈j
′
;m

′
|H|j;m〉 = δjj′ δmm′ 〈j;m|H|j;m〉 (171)

Finally, [H,J+] = 0 implies

〈j;m| [H,J+] |j;m− 1〉 = 0
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⇒
√

(j −m+ 1) (j +m)〈j;m|H|j;m〉 =
√

(j +m) (j −m+ 1)〈j;m−1|H|j;m−1〉

⇒ 〈j;m|H|j;m〉 = 〈j;m− 1|H|j;m− 1〉 (172)

Therefore, not only the Hamiltonian is diagonal, its matrix elements being non-
zero only for the diagonal entries 〈j;m|H|j;m〉, these values are the same for
all m for a given j. So we can label these values by j:

〈j;m|H|j;m〉 ≡ Hj ∀m ∈ {j, j − 1, . . . ,−j} (173)

With this notation,
〈j

′
;m

′
|H|j;m〉 = δjj′ δmm′Hj (174)

Equation (174) is nothing but the Wigner-Eckart theorem29 for scalar oper-
ators.

A little digression :

The classification of operators as scalars, vectors etc. or, most generally as ten-
sors of different ranks (or types), is always on the basis of some transformations
of the coordinates (or change of reference frames). Suppose we are concerned
with rotations of Cartesian axes in three dimensional Euclidean space. Things
that do not change under this set of transformations are called scalars under
rotations – example : Euclidean distances between points. The set of three
Cartesian coordinates of points do change under rotations in a definite fashion.
This set of coordinates of a point is by definition called a vector. Any other set
of three numbers that also change under rotations in precisely the same way
as a vector is also called a vector. So, the family of vectors is defined in terms
of the way in which the members transform under rotations. Similarly, there
are other families of objects, tensors of several types, members of which trans-
form differently from vectors, but all tensors of one type (or family) transform
similarly under rotations. Take note that whenever I am saying that something
transforms this way or that way, I have been constantly following that up with
the phrase “under rotations”. Very often for brevity we do not repeat this
phrase when we are talking about only one kind of coordinate transformation,
here rotations. But when we have many types of coordinate transformations
to worry about, say rotations, Lorentz transformations etc., and we are saying
that something is a vector or a scalar or a tensor of a certain type, we have
to mention “under which transformation” it is so. If an object A is a vector
under rotations (transforms similarly to the coordinates (x, y, z) of a point), it
will most likely not be a vector under Lorentz transformation (will not trans-
form similarly to the coordinates (t, x, y, z) of an event). Having told you the
importance of mentioning which type of transformation one is dealing with, I
shall give in, like everybody else, to the laziness of not mentioning it.
In the context of quantum mechanics, a three component operator Vj is a vector

29Brush up on the general Wigner-Eckart theorem for tensor operators of arbitrary ranks.
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operator under rotation if it satisfies the following commutation relation with
angular momentum operators :

[Ji, Vj ] = iεijkVk (175)

I will not elaborate on why a vector operator is defined this way. Look it up, or
better think about it. Similarly, a scalar operator is one which commutes with
all the Jis. The rotationally symmetric Hamiltonian H is a scalar operator.

We shall now take up the case of the neutron and the proton. These two
particles have nearly the same mass. The major difference between them is
that neutron is electrically neutral whereas proton has an electric charge of one
unit. In fact, the slight difference in the masses of these two particles comes
from electromagnetism. In a world without electromagnetism, there would be
virtually no difference between a neutron and a proton. This prompts us to
hypothesize that neutron and proton are not two different particles but two
states of the same particle. We shall assume that, in our imaginary world
without electromagnetism, isospin is a symmetry and proton and neutron form
an isospin doublet. They belong to j = 1

2 , with the neutron and the proton
having up spin and down spin respectively. The states are denoted by

|n〉 ≡ |p, ↑〉, |p〉 ≡ |p, ↓〉 (176)

The neutron and the proton are nucleons and the dominant force acting on them
is the strong force. The full Hamiltonian of interactions between elementary
particles have three pieces (in the approximation of weak gravitational field)

H = Hstrong +Hweak +Hem (177)

where the terms correspond, in order, to the strong interaction, the weak in-
teraction and the electromagnetic interaction. We are assuming that isospin
is a symmetry of the strong interaction. Hence, under transformations gener-
ated by isospin operators, Hstrong → Hstrong. These transformations act not
on the configuration space of the particles, obviously, and are said to act on
the internal space of the system. Such symmetries of the internal space are
called internal symmetries. Now, isospin operators generate SU (2) trans-
formations. So, according to our hypothesis, the symmetry transformations of
the internal space are SU (2) transformations. We could take an alternative
approach and derive the symmetry transformations of the internal space. It
goes like the following. Suppose that the internal space is spanned by |n〉 and
|p〉. Consider a symmetry transformation (linear)(

|p〉
|n〉

)
→
(
|p′〉
|n′〉

)
=

(
α β
γ δ

)(
|p〉
|n〉

)
(178)

This being a symmetry really means that norms do not change under such a

transformation. That implies U ≡
(
α β
γ δ

)
is unitary : U†U = I. Hence,
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|detU |2 = 1⇒ detU = eiθ, for some θ ∈ [0, 2π). Every 2× 2 unitary matrix U
can be expressed in the form U = eiθ/2U

′
where detU

′
= 1, ∴ U

′ ∈ SU (2). In
the language of group theory, U (2) ∼= SU (2)× U (1) (this is a direct product).
Thus we have(

|p〉
|n〉

)
→
(
|p′〉
|n′〉

)
= ei

θ/2

(
α β
−β∗ α∗

)(
|p〉
|n〉

)
where |α|2 + |β|2 = 1 (179)

Recall that

(
|p〉
|n〉

)
and

(
|p′〉
|n′〉

)
represent the same physical state. One observer

(A) represents the state with the vector

(
|p〉
|n〉

)
, and the U -transformed ob-

server (B) represents it with

(
|p′〉
|n′〉

)
. If observer B chooses to represent all the

states with an overall phase of eiθ/2, then this factor will be absorbed in the

state

(
|p′〉
|n′〉

)
. Then, one can live with just an SU (2) transformation matrix(

α β
−β∗ α∗

)
.

We studied in quantum mechanics that the total wave function of a particle
with spin has two factors : ψ = ψspaceψspin. The total wave function should
be antisymmetric for fermions. Now that we have isospin in the picture, ψ =
ψspaceψspinψisospin should be antisymmetrized. Deuteron is a fermion that has
zero orbital angular momentum, so its ψspace is symmetric. It has spin 1, so
its ψspin is symmetric (triplet). Therefore, it has to have an antisymmetric
ψisospin. It actually turns out that it is an isospin 0 particle, hence a singlet.
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6 Week 6

6.1 Lecture 16 : February 8, 2016

We saw that the T operators of su (3) are called isospin operators. They are
often denoted by I instead of T . We could just as well work with the su (2)
algebra of the U (or the V ) operators and call that isospin. But it is customary to
work with the T operators. We also saw that the matrix elements 〈j;m|H|j′ ;m′〉
of a rotationally invariant Hamiltonian are non-zero only when j = j

′
,m =

m
′
. Since these matrix elements are also the transitions amplitudes, therefore

the result 〈j′ ;m′ |H|j;m〉 = δjj′ δmm′Hj is essentially a statement of isospin
conservation.

Consider the process in which a pion and a deuteron collide to produce two
nucleons. Pion, denoted Π, is a particle with I = 1, so it has three states
Π+,Π0,Π− corresponding to the I3 values 1, 0,−1 respectively. Deuteron is an
isospin singlet, and has only one state d. Nucleons proton and neutron are two
states of an I = 1

2 particle. Charge conservation30 tells us that these are the
allowed channels :

Π+d→ pp
Π0d→ pn or np

Π−d→ nn
(180)

In a scattering of a pion and a deuteron, all these three channels are probable
outcomes. Using isospin conservation we shall figure out the relative scattering
cross-sections of these channels.

In order to calculate the ratios of the scattering cross-sections of the three
channels, we need to know the formula for the scattering cross-section of one
channel. This is an exercise in quantum mechanics and I shall just quote the
result here without deriving it. For a scattering process with the Hamiltonian
H, the scattering cross section σ of a channel where the initial and the final
states are respectively |i〉 and |f〉is given by

σ ∼ |〈f |H|i〉|2ρ (181)

where ρ is a phase factor that depends on the masses of the particles involved
in the channel. For the channels of our interest, the phase factors are going to
be nearly the same since all the pions have nearly the same mass and so do the
nucleons. The difference between the scattering cross-sections will arise from
the factor |〈f |H|i〉|2. Note that we do not have any clue about the explicit form
of the Hamiltonian except for the fact that it is rotationally invariant. The
magic is that rotational invariance is all you need to know about H in order to
find the ratios of the cross-sections. Let’s see how.

30You might object here. We had earlier said that we would switch off electromagnetism so
that isospin would be a symmetry. Now we are using charge conservation to see which channels
are allowed! Your objection is justified. However, since we know that electromagnetism is
there (and therefore isospin is not an exact symmetry), all physical processes must obey charge
conservation. Therefore, to ease the present dilemma, let’s say that we are “interested” (for
no good reason) in the channels mentioned above and take it from there.
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The initial states of the three channels belong to the 3 ⊗ 1 product repre-
sentation of (isospin) su (2). And the final states belong to the 2 ⊗ 2 = 3 ⊕ 1
representation. We would like to express the initial states |Π0,±d〉 in terms of
the natural basis states of the product representation. It is easy to see that

|Π+d〉 = |1; 1〉 ⊗ |0; 0〉 = |1; 1〉
|Π0d〉 = |1; 0〉
|Π−d〉 = |1;−1〉

(182)

The states on the right hand side should really be written in the format |j1, j2; j,m〉.
For instance, for the first state : |j1;m1〉⊗|j2;m2〉 ≡ |1; 1〉⊗|0; 0〉 = |1, 0; 1, 0〉 ≡
|j1, j2; j,m〉. Since all the states on the right hand side have the same j1and j2
labels, so we drop them and only explicitly write the j and m labels. We do the
same for the final states with two nucleons. This is just like adding two 1

2 spins.
The Clebsch-Gordan series for this simple exercise gives the three triplet states

|1; 1〉 = |pp〉
T−|1; 1〉 =

√
2|1; 0〉 = T−|pp〉 = (|np〉+ |pn〉)⇒ |1; 0〉 = |np〉+|pn〉√

2

|1;−1〉 = |nn〉
(183)

and the singlet state

|0; 0〉 =
|pn〉 − |np〉√

2
(184)

Having described the incoming and outgoing states, let us compute

〈pp|H|Π+d〉 = 〈1; 1|H|1; 1〉 ≡ H1 (185)

Using isospin conservation we have concluded that 〈1; 1|H|1; 1〉 is non-zero, de-
pends only on the j value which is 1 and is therefore labeled as H1. Notice
that the bra 〈1; 1| and the ket |1; 1〉 in the above equation do not correspond
to the same state (because they represent two very different pairs of particles!).
However, the isospin labels (or eigenvalues) of these two states are the same and
isospin is all we are concerned about right now. So, in that sense, they are the
same state. Next,

〈nn|H|Π−d〉 = 〈1;−1|H|1;−1〉 = 〈1; 1|H|1; 1〉 ≡ H1 (186)

Here we have used 〈1;−1|H|1;−1〉 = 〈1; 1|H|1; 1〉, the fact that the matrix
element 〈j;m|H|j;m〉 is the same for all m for a given value of j. Finally,

〈Π0d|H|pn〉 = 〈1; 0|H
(
|1;0〉+|0;0〉√

2

)
= 〈1;0|H|1;0〉√

2
= H1√

2

〈Π0d|H|np〉 = 〈1; 0|H
(
|1;0〉−|0;0〉√

2

)
= 〈1;0|H|1;0〉√

2
= H1√

2

(187)

Since both the processes are possible in this channel, we add the probability
amplitudes. So, the net probability amplitude is

H1√
2

+
H1√

2
=
√

2H1 (188)
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Hence,

σ
(
Π+d→ pp

)
: σ
(
Π0d→ pn

)
: σ
(
Π−d→ nn

)
= |H1|2 : 2|H1|2 : |H1|2 = 1 : 2 : 1

(189)
If isospin symmetry is assumed to be exact, which is what we did above, then
the masses of the three pions would be identical, masses of the nucleons would
be identical, and ρ factors would exactly cancel from the ratio of cross-sections.
And we get the exact ratio given in equation (189). We can experimentally verify
this pretty easily. Hence, our proposition of isospin being a symmetry is falsifi-
able. Note that we have only been able to calculate the ratios of the scattering
cross-sections using symmetry. The exact values of the cross-sections cannot be
calculated unless one knows the details of the dynamics – the Hamiltonian.

Let us master the technique by repeating the exercise at another process.
This one would require slightly more effort calculation-wise. Consider the scat-
tering of a pion (Π) and a nucleon (N) that produces a pion and a nucleon :
ΠN → ΠN . Again, the channels allowed by charge conservation are the ones
we should be interested in. There are many such channels. Let us focus on two
of them and calculate the ratio of their scattering cross-sections.

Π+p→ Π+p
Π−p→ Π−p or Π0n

(190)

The states on the left belong to the 3 ⊗ 2 product representation of isospin
su (2), and31 3⊗2 = 4⊕2. Now, |Π+p〉 is the state with a total J3 eigenvalue of
3
2 , and must be the highest weight state of the 4 dimensional component irrep.
Hence, suppressing the j1 and j2 labels in the coupled basis state |j1, j2; j,m〉,
|Π+p〉 = | 32 ; 3

2 〉(= |1,
1
2 ; 3

2 ,
3
2 〉). The other two product states of interest to us are

|Π−p〉 and |Π0n〉. Both these states have a J3 eigenvalue of − 1
2 . There are two

states in the direct sum decomposition 4 ⊕ 2 with J3 eigenvalue of 1
2 , namely

| 32 ;− 1
2 〉 and | 12 ;− 1

2 〉. Therefore, we must have | 32 ;− 1
2 〉 = α|Π−p〉+β|Π0n〉, with

normalization imposed by |α|2 + |β|2 = 1. | 12 ;− 1
2 〉 is also a linear combination

of the states |Π−p〉 and |Π0n〉. Orthogonality of | 32 ;− 1
2 〉 and | 12 ;− 1

2 〉 demands
that | 12 ;− 1

2 〉 = β|Π−p〉−α|Π0n〉. We could easily obtain the coefficients α and β
by making the shift/ladder operators acting on the various states following the
prescription of the Clebsch-Gordan series. There is another way of computing
these coefficients. We shall demonstrate it now. Take | 32 ;− 1

2 〉 = α|Π−p〉 +
β|Π0n〉 and make I2 act on both sides. The action on the L.H.S gives

I2|3
2

;−1

2
〉 =

3

2

(
3

2
+ 1

)
|3
2

;−1

2
〉 =

15

4
|3
2

;−1

2
〉 =

15

4

(
α|Π−p〉+ β|Π0n〉

)
(191)

To compute the action on the right hand, notice that I2 =
(
I(1)

)2
+
(
I(2)

)2
+

31In other words, adding the angular momenta j1 = 1 and j2 = 1
2

gives us one total angular

momentum of j = j1 + j2 = 3
2

and another total angular momentum of j = j1 + j2− 1 = 1
2

=
|j1 − j2|.
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2I
(1)
3 I

(2)
3 + I

(1)
+ I

(2)
− + I

(1)
− I

(2)
+ . Therefore,

I2|Π−p〉 =

((
I(1)

)2

+
(
I(2)

)2

+ 2I
(1)
3 I

(2)
3 + I

(1)
+ I

(2)
− + I

(1)
− I

(2)
+

)
|Π−p〉

=

(
2 +

3

4
+ 2 (−1)

(
1

2

))
|Π−p〉+

√
2|Π0n〉 =

7

4
|Π−p〉+

√
2|Π0n〉

I2|Π0n〉 =

((
I(1)

)2

+
(
I(2)

)2

+ 2I
(1)
3 I

(2)
3 + I

(1)
+ I

(2)
− + I

(1)
− I

(2)
+

)
|Π0n〉

=

(
2 +

3

4
+ 2 (0)

(
−1

2

))
|Π0n〉+

√
2|Π−p〉 =

11

4
|Π0n〉+

√
2|Π−p〉

∴ I2
(
α|Π−p〉+ β|Π0n〉

)
=

7α+ 4
√

2β

4
|Π−p〉+

4
√

2α+ 11β

4
|Π0n〉 (192)

Comparing equations (191) and (192),

15α = 7α+ 4
√

2β ⇒
√

2α = β

15β = 4
√

2α+ 11β ⇒
√

2α = β
(193)

Are you surprised that both equations give the same solution? Of course, had
they given inconsistent solutions then we would have been in a soup. So, the
solution above being consistent is a relief. But weren’t we supposed to get the
values of α and β out of these equations, whereas we get the ratio α

β instead?

The answer is simple. All we demanded is that α|Π−p〉 + β|Π0n〉 be equal to
| 32 ;− 1

2 〉, thus having a an I2 eigenvalue of 15
4 and an I3 eigenvalue of − 1

2 . The
fact that it has I3 eigenvalue of − 1

2 is automatically satisfied for all α, β, and
does not tell us anything about them. So we moved on to the I2 eigenvalue
and that gave us the equations above. However, if α|Π−p〉+ β|Π0n〉 has an I2

eigenvalue of 15
4 , then so does k

(
α|Π−p〉+ β|Π0n〉

)
for any arbitrary complex

number k. So, the I2 eigenvalue also does not tell us everything about the
coefficients and gives only their ratio. Now we make use of the normalization
condition |α|2 + |β|2 = 1 and the phase freedoms to choose simplest phases for

α, β. We get : α = 1√
3
;β =

√
2
3 .

| 32 ; 3
2 〉 = |Π+p〉

| 32 ;− 1
2 〉 = 1√

3
|Π−p〉+

√
2
3 |Π

0n〉

| 12 ;− 1
2 〉 =

√
2
3 |Π
−p〉 − 1√

3
|Π0n〉

(194)

The method we employed here to find out α, β works as efficiently as the Clebsch-
Gordan method. Although the full blown Clebsch-Gordan computation gives
you the entire set of states, it is often too much work if you do not need the
Clebsch-Gordan (aka CG) coefficients of all the states. Our approach takes less
time to calculate the CG coefficients for a few states of interest. You might
think that the full blown Clebsch-Gordan computation for the above example
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would not have taken more time than our trick did. That is true. But for larger
dimensions of product representations, the economy of time gained by this trick
becomes significant.

Now we need to invert these to express |Π+p〉, |Π−p〉, |Π0n〉 as linear combi-
nations of | 32 ; 3

2 〉, |
3
2 ;− 1

2 〉, |
1
2 ;− 1

2 〉. This is also easy.

|Π+p〉 = | 32 ; 3
2 〉

|Π−p〉 = 1√
3
| 32 ;− 1

2 〉+
√

2
3 |

1
2 ;− 1

2 〉

|Π0n〉 =
√

2
3 |

3
2 ;− 1

2 〉 −
1√
3
| 12 ;− 1

2 〉
(195)

Finally we compute the transition amplitudes for the channels |i〉 → |f〉, denoted
a (|i〉 → |f〉). These are the matrix elements 〈f |H|i〉. We have, 〈Π+p|H|Π+p〉 =
〈 32 ; 3

2 |H|
3
2 ; 3

2 〉 ≡ H3/2. Next,

〈Π−p|H|Π−p〉 =

(
1√
3
〈3
2

;−1

2
|+
√

2

3
〈1
2

;−1

2
|

)
H

(
1√
3
|3
2

;−1

2
〉+

√
2

3
|1
2

;−1

2
〉

)

=
1

3
H3/2 +

2

3
H1/2

Finally,

〈Π0n|H|Π−p〉 =

(√
2

3
〈3
2

;−1

2
| − 1√

3
〈1
2

;−1

2
|

)
H

(
1√
3
|3
2

;−1

2
〉+

√
2

3
|1
2

;−1

2
〉

)

=

√
2

3
H3/2 −

√
2

3
H1/2

Hence,
a (Π+p→ Π+p) = H3/2

a (Π−p→ Π−p) = 1
3H3/2 + 2

3H1/2

a
(
Π−p→ Π0n

)
=
√

2
3 H3/2 −

√
2

3 H1/2

(196)

6.2 Lecture 17 : February 10, 2016

Let’s take off from where we were in the last class. It seems that all we need
to compute is the matrix elements such as 〈Π−p|H|Π−p〉. Why then did we go
through all the trouble of expressing the states |ΠN〉 as linear combinations of
eigenstates of the total isospin operator I2? In other words, why did we compute
the CG coefficients at all instead of just putting in the states |ΠN〉 for them-
selves? The answer is simple. We do not know anything about the Hamiltonian
H other than the fact that it is isospin symmetric and, consequently, is diagonal
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in the so called coupled basis,
{
|i(1), i(2); i, i3〉

}
, which is the simultaneous eigen-

basis of
(
I(1)

)2
,
(
I(2)

)2
, I2 and I3. The states |ΠN〉 (which form the so called

uncoupled basis) are simultaneous eigenstates of
(
I(1)

)2
, I

(1)
3 ,

(
I(2)

)2
,I

(2)
3 and

not of the total angular momentum operator I2. In this basis, therefore, H is
not diagonal. In order to exploit the diagonal structure of H in the coupled ba-
sis, we had to express the states |ΠN〉 in their Clebsch-Gordan series expansion.
In a quantum field theoretic approach where the Hamiltonian is known and is
expressed in terms of the creation and annihilation field operators of the parti-
cles involved, we would not need to carry out the CG expansions of the |ΠN〉
states. In that case we would be able to compute the individual cross-sections,
not just their ratios, since the dynamics would be completely known. There is
also a physical significance of the fact that H is not diagonal in the |ΠN〉 basis.
Had it been so, then there could only have been elastic scatterings of pions and
nucleons since the transition amplitudes for the inelastic channels would have
vanished. H is not diagonal in this basis precisely because of the interaction
terms in the Lagrangian of the pion fields and the nucleon fields. Rather, since
we (experimentalists) know that pions and nucleons do scatter inelastically, H
must contain such interaction terms.

Now, equation (196) gives the scattering amplitudes. We need to take the
squares of the moduli of the amplitudes to compute the cross-sections, denoted
σ (|i〉 → |f〉).

σ (Π+p→ Π+p) = |H3/2|2

σ (Π−p→ Π−p) =
|H3/2|

2

9 |1 +
2H1/2

H3/2
|2

σ
(
Π−p→ Π0n

)
=

2|H3/2|
2

9 |1− H1/2

H3/2
|2

(197)

Therefore,

σ
(
Π+p→ Π+p

)
: σ
(
Π−p→ Π−p

)
: σ
(
Π−p→ Π0n

)
= 1 :

|1 +
2H1/2

H3/2
|2

9
:

2|1− H1/2

H3/2
|2

9
(198)

This ratio can be experimentally verified like the previous one only if we know
the theoretical values of H1/2 and H3/2. These values can be computed using
QFT and experimental plots can be matched with the theoretical predictions.
We can perform the experiment of scattering a nucleon and a pion at various
energies, meaning that the total energy Etot in the CM frame of the incoming
particles may be varied. An experimentalist plots the scattering cross-sections
of the three channels at all these energies to get one σ versus Etot curve for each
channel and checks whether the theoretically predicted ratio holds true at each
value of Etot. Such an experimental plot schematically looks like this :
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All the three channels have unmistakable peaks at Etot ∼ 1200 MeV. The
heights of peaks are almost 60 times the heights of the flatter part of the curves.
This peak indicates that at this particular value of the total energy in the CM
frame, H3/2 � H1/2. This should not happen in the Π+p→ Π+p channel since it
seems to be an elastic scattering. But you cannot deny the experimental results.
That means that Π+p → Π+p must not be a simple elastic collision. This
scattering has an intermediate step in which a very short lived-particle, later
identified as the particle 4++. This is the experiment that led to the discovery
of 4++. Experimentally, its track shows that it hardly moves, confirming that
it is indeed a short-lived particle. Its fast production and consequent decay is a
signature of the robustness of the strong interaction through which it is created
and annihilated.

At this point, for the sake of giving you a flavor of the history of the devel-
opment of particle physics, let me quote a formula known as the Gell-Mann -
Nishijima formula :

Q = I3 +
Y

2
(199)

Here Q is the electric charge of an elementary particle (say A), I3 is its I3-
eigenvalue, and Y

2 is 〈Q〉, the average of the electric charges of all other elemen-
tary particles belonging to the same isospin multiplet as that of A.

Y

2
≡ 〈Q〉 (200)

Therefore, all particles belonging to the same isospin multiplet have the same Y
value by virtue of the definition of Y . The Gell-Mann - Nishijima formula relates
the electric charge of a particle with its isospin value. This was an empirical
formula that was arrived at by simply observing the charges of the particles in
different isospin multiplets. Today we can prove the result using sophisticated
QFT calculations. One could easily define Y ≡ 〈Q〉, without the factor of 1

2 .
But the usual definition is preferred because that results in integer values of
Y . We shall take in all this as mere facts for now, without much justification,
keeping in mind that all this can be derived rigorously using QFT.

Now, we have seen that existence of 4++ was predicted to explain the peak
in the σ vs. Etot curve for Π+p → Π+p. Charge conservation demands that
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4++ have an electric charge of 2 units, hence the superscript ++. Similarly,
existence of the particle 40 was predicted to explain the peak in the curve for
Π−p→ Π−p. This way, existence of four 4 particles were predicted with 4++

having the highest amount of positive charge. These are : 4++,4+,40,4−.
These four particles form an isospin multiplet among themselves. The following
table gives the Y values of certain isospin multiplets :

4++ 4+ 40 4− Y = 1
Π+ Π0 Π− Y = 0

p n Y = 1
(201)

The particles in this table are all hadrons. Hadron is a name given to particles
that take part in strong interaction. Heavy hadrons such as p, n, 4’s are called
baryons. Hadrons with weight in the medium range are called mesons, e.g.
Π0,±. Notice in the table that the two multiplets with Y = 1 are composed of
baryons having half-integral isospin, while that with Y = 0 has mesons with in-
tegral isospin. So people thought that Y is nothing but B, the baryon number,
which takes the value 1 for baryons and the value 0 otherwise. So, the original
Gell-Mann - Nishijima formula was written as Q = I3 + B

2 . Later people found
the much heavier strange particles32, and this simple interpretation Y = B
did not suffice anymore. Thus, the formula kept getting modified over time.

6.3 Lecture 18 : February 11, 2016

Today we shall give a very brief overview of scattering processes in quantum
mechanics. You should already be familiar with the topic. Our purpose is just
to brush up on the results we would be using later on.

32Strange particles are much heavier, so it takes more energy to find them. It took much
time to improve the experimental setups to operate on such high energy scales as that needed
to observe strange particles.
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7 Week 7

7.1 Lecture 19 : February 22, 2016

Discussion of midsem question paper
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7.2 Lecture 20 : February 24, 2016

Continuing discussion of scattering up to Breit-Wigner.

We shall now start a discussion on Poincare symmetry and the effect of
Poincare transformations on the states of a Hilbert space. A Poincare transfor-
mation (Λ, a) is a transformation of the coordinates (t, ~x)

µ ≡ xµ

xµ → x
′µ = Λµνx

ν + aµ (202)

where Λ is a Lorentz transformation matrix satisfying ΛT ηΛ = η, η being
the Minkowski metric η = diag (1,−1,−1,−1), and aµ’s are components of
a translation 4-vector. The set of all Poincare transformations, denoted P ={

(Λ, a) : ΛT ηΛ = η
}

is a group under the group composition rule

(Λ, a)
(
Λ̄, ā

)
=
(
ΛΛ̄,Λā+ a

)
(203)

The two important subgroups of P are L =
{

(Λ, 0) : ΛT ηΛ = η
}

, the Lorentz
subgroup, and T = {(I, a)}, the translation subgroup, where I is the identity
matrix. You can check that these are subgroups by verifying (Λ, 0)

(
Λ̄, 0

)
=(

ΛΛ̄, 0
)

and (I, a) (I, ā) = (I, a+ ā). Clearly, these subgroups are isomorphic to
the Lorentz group and the translation group respectively. You might wonder if
P is a direct product of the subgroups L and T . In fact, it is not. Instead,
P = L o T , that is, P is a semidirect product of L and T . We shall not
go into the definition and detailed discussion of the semidirect product now.
Instead, let us investigate the action of Poincare transformations on Hilbert
spaces.

We have seen that the Poincare group, by definition, consists of transfor-
mations of the coordinates xµ. If we demand that these transformations be
symmetries of nature, then we can conclude that each Poincare transformation
can be represented as either a unitary and linear operator on a Hilbert space, or
as an anti-unitary and anti-linear operator on a Hilbert space. This conclusion
is the result of Wigner’s theorem. For the time being, we focus on Proper33

Orthochronous Poincare transformations for which det Λ = 1 and Λ0
0 ≥ 1. It

can be shown that representations of proper orthochronous Poincare transfor-
mations can be chosen to be unitary and linear. From here onward, we shall

33The defining requirement ΛT ηΛ = η on Λ for it to be a Lorentz transformation implies
that det Λ = ±1 and |Λ0

0| ≥ 1. These conditions are used to classify Lorentz transformations.
Lorentz transformations with Λ0

0 ≥ 1 are called orthochronous, those with Λ0
0 ≤ −1 are called

non-orthochronous. Lorentz transformations with det Λ = 1 are called proper and those with
det Λ = −1 are called improper. The set of Lorentz transformations that are both proper
and orthochronous forms a subgroup and is called P.O.L.T. group or the group of Proper
Orthochronous Lorentz transformations. The set of Poincare transformations whose Lorentz
transformation component is proper and orthochronous is a subgroup and is called the Proper
Orthochronous Poincare transformation group or the P.O.P.T group.
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not explicitly qualify a Poincare transformation with the adjectives proper and
orthochronous. Unless otherwise mentioned, we will be considering proper and
orthochronous transformations only. So, the effect of Poincare transformations
in quantum mechanics is the following :

|ψ〉 → |ψ
′
〉 = U (Λ, a) |ψ〉 (204)

where U (Λ, a) is chosen to be unitary and linear34. Evidently, the operators
U (Λ, a) form a representation of the Poincare group. We have,

U (Λ, a)U
(
Λ̄, ā

)
= U

(
ΛΛ̄,Λā+ a

)
(205)

Consider an infinitesimal proper Poincare transformation :

Λµν = δµν + ωµν
aµ = εµ

(206)

where ωµν and εµ are infinitesimal. The condition ΛT ηΛ = η has to be satisfied
b the infinitesimal transformation, and that implies ωµν + ωνµ = 0. That is, ω,
with both indices lowered, is antisymmetric. The antisymmetric matrix which
has ωµν as the entry in the intersection of the µth row and the νth column is
denoted by Ω. Similarly, the column vector with εµ as its µth entry is denoted
by ε. Thus, the infinitesimal Poincare transformation (206) can be expressed
in the matrix form as (I + Ω, ε). We have 6 independent Lorentz parameters
(ωµν), 3 of them correspond to boosts and 3 to rotations. In addition, there
are 4 translation parameters. So the Poincare group is a 10 parameter group,
and therefore has 10 generators. Corresponding to the infinitesimal Poincare
transformation (206), we have a unitary linear operator U (I + Ω, ε), which is
different from the identity operator on the Hilbert space only slightly.

U (I + Ω, ε) = I +
i

2
ωµνJ

µν − iεµPµ (207)

The i’s are there to ensure that Jµν and Pµ, the generators (on the Hilbert
space) of Lorentz transformations and translations respectively, are Hermitian.
From equation (205), we deduce that

U (Λ, a)U
(
Λ̄, ā

)
(U (Λ, a))

−1
= U

(
ΛΛ̄Λ−1,Λā+ a− ΛΛ̄Λ−1a

)
(208)

In particular, for
(
Λ̄, ā

)
= (I + Ω, ε),

U (Λ, a)U (I + Ω, ε) (U (Λ, a))
−1

= U
(
I + ΛΩΛ−1,Λε−

(
ΛΩΛ−1

)
a
)

(209)

We notice that the net Poincare transformation
(
I + ΛΩΛ−1,Λε−

(
ΛΩΛ−1

)
a
)

is also infinitesimal because both Ω and ε are infinitesimal. Therefore, the right
hand side can be expanded, following equation (207), as I+ i

2ωµν
(
ΛΩΛ−1

)µν −
34The fact that it can be done is guaranteed by Wigner’s theorem. For a detailed proof of

the theorem, look up Weinberg, volume 1.
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i
(
Λε− ΛΩΛ−1a

)
µ
Pµ. The middle factor on the left hand side has the familiar

expansion (207). Thus,

U (Λ, a)

(
I +

i

2
ωµνJ

µν − iεµPµ
)

(U (Λ, a))
−1

= I+
i

2
ωµν

(
ΛΩΛ−1

)µν−i (Λε− ΛΩΛ−1a
)
µ
Pµ

⇒ I+
i

2
ωρσU (Λ, a) JρσU−1 (Λ, a)−iερP ρ = I+

i

2
ωµν

(
ΛΩΛ−1

)µν−i (Λε− ΛΩΛ−1a
)
µ
Pµ

Equating the antisymmetric part of the coefficients of ωρσ and also coefficients
of ερ on both sides, we get

U (Λ, a) JρσU−1 (Λ, a) = Λ ρ
µΛσ

ν (Jµν − aµP ν + aνPµ)
U (Λ, a)P ρU−1 (Λ, a) = Λ ρ

µP
µ (210)

Here, Λ ρ
µ ≡

(
Λ−1

)ρ
µ

= the µρth element of
(
Λ−1

)T
. Then, we choose (Λ, a)

to be infinitesimal as well. Putting (Λ, a) = (I + Ω, ε) in (210), we get the
commutators of the generators of Poincare transformations. These commutator
relations give the Poincare algebra :

i [Jµν , Jρσ] = ηνρJµσ + ηµσJνρ − ηµρJνσ − ηνσJµρ
i [Pµ, Jρσ] = ηµρPσ − ηµσP ρ

[Pµ, P ν ] = 0
(211)

The commutators become familiar when we switch to the one-index notation
for the Lorentz generators Jµν . Define

~J =
(
J1, J2, J3

)
≡
(
J23, J31, J12

)
← rotation generators

~K =
(
K1,K2,K3

)
≡
(
J01, J02, J03

)
← boost generators

~P =
(
P 1, P 2, P 3

)
← space translation generators

H = P 0 ← time translation generator, or the Hamiltonian

(212)

With this notation, the Poincare algebra35 takes the form

[Ji, Jj ] = iεijkJk [Ki,Kj ] = −iεijkJk
[Ji,Kj ] = iεijkKk [Ki, Pj ] = iHδij
[Ji, Pj ] = iεijkPk

[
H,Ki

]
= −iP i

(213)

This completes a quick review of the Poincare algebra that we learned in last
semester’s QFT course. Now, since [Pµ, P ν ] = 0, therefore single particle states
can be chosen to be simultaneous eigenstates of the 4-momentum operators Pµ.
Let, |p, σ〉 be a simultaneous eigenstate of Pµ with respective eigenvalues pµ.
Here, σ denotes other labels that may be required to identify the states.

Pµ|p, σ〉 = pµ|p, σ〉 (214)

35This form of the commutation relations explicitly shows that ~K and ~P are vector operators
under rotation.
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Now that we have chosen one particle states, the next task is to compute the
actions of Poincare transformations on these one particle states. Action of the
translation operators is easy to deduce. We know that U (I, a) = e−iP.a, where
P.a = Pµaµ. Therefore,

U (I, a) |p, σ〉 ≡ e−iP.a|p, σ〉 = e−ip.a|p, σ〉 (215)

That is, |p, σ〉 is an eigenstate of U (I, a) with eigenvalue e−ip.a. Therefore the
translation operators are diagonal in the basis of one particle states |p, σ〉.

Before finishing off, let me briefly explain how we have U (I, a) = e−iP.a. An
infinitesimal translation operator looks like the following : I−iεµPµ. To achieve
a finite translation by a ≡

(
a0, a1, a2, a3

)
, we can break it up into N smaller

translations, each by an amount a
N . As we increase N , the smaller translations

become infinitesimal, and we can approximate them by I− iaµN P
µ. In the limit

N →∞, this becomes exact. Hence,

U (I, a) = lim
N→∞

(
I− iaµP

µ

N

)N
= e−iaµP

µ

(216)

The last equality follows from the fact that the exponential function is defined

as ex ≡ lim
N→∞

(
1 + x

N

)N
. You may protest, that x is a number whereas aµP

µ

is an operator. That’s true, but all the Pµ’s commute with each other. The
above limit involves only the operations of addition and multiplication, and x
and Pµ’s add and multiply exactly the same way.
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7.3 Lecture 21 : February 25, 2016

We chose the simultaneous eigenstates |p, σ〉 of Pµ as the basis one particle
states and figured out the action of a translation operator U (I, a) = e−iP.a on
them. We found that the translation operators are diagonal in this basis. Now
we would inspect the action of a pure36 Lorentz transformation U (Λ, 0) ≡ U (Λ)
on the states |p, σ〉. Start by observing

Pµ (U (Λ) |p, σ〉) = U (Λ)
[
U−1 (Λ)PµU (Λ)

]
|p, σ〉

= U (Λ) ΛµρP
ρ|p, σ〉 =

(
Λµρp

ρ
)

(U (Λ) |p, σ〉)

∴ Pµ (U (Λ) |p, σ〉) = (Λp)
µ

(U (Λ) |p, σ〉) (217)

Here, we have used the equation U (Λ, a)P ρU−1 (Λ, a) = Λ ρ
µP

µ of (210) with
Λ−1 in place of Λ and a = 0. This tells us that U (Λ) |p, σ〉 belongs to the
eigenspace of Pµ corresponding to the eigenvalue (Λp)

µ
. Thus,

U (Λ) |p, σ〉 =
∑
σ′

Cσ′σ (Λ, p) |Λp, σ
′
〉 (218)

Our job of computing the action of U (Λ) on |p, σ〉 essentially boils down to
finding out the coefficients Cσσ′ (Λ, p). Even before setting out to find the
Cσσ′ ’s, let us observe the following. Consider the hypothetical situation where
there is only one label σ and it can take 5 different values, namely 1, 2, 3, 4, 5.
Suppose now that we take the state |p, 1〉 and make U (Λ) act on it. The
resultant state is a linear combination C11 (Λ, p) |Λp, 1〉 + C21 (Λ, p) |Λp, 2〉 +
C31 (Λ, p) |Λp, 3〉 + C41 (Λ, p) |Λp, 4〉 + C51 (Λ, p) |Λp, 5〉. The coefficients Cσ′σ

can be put into a matrix form with σ
′

being the row index and σ the column
index. Call this matrix C. Now, if we can choose the σ labels in such a way
that C assumes a block diagonal form, say of the following kind,

C =


3×3

2×2

 (219)

then we can easily see that U (Λ) mixes states with σ values 1, 2 and 3 among
themselves and states with σ values 4 and 5 among themselves. You might think
that such a choice for the label σ breaks the Hilbert space up in a direct sum of
the component irreps of U (Λ). But that is simply wrong. Because, even with
such a block diagonal C, U (Λ) : |p, 1〉 7→ C11 (Λ, p) |Λp, 1〉+ C21 (Λ, p) |Λp, 2〉+
C31 (Λ, p) |Λp, 3〉. That is, |p, (1, 2, 3)〉 go to a linear combination of |Λp, (1, 2, 3)〉
and not of |p, (1, 2, 3)〉. In addition to mixing of the σ values, the value of p

36Meaning a Poincare transformation with zero translation.

86



changes to Λp. Notice one more thing. U (Λ) is a symmetry transformation. It
relates two ways of describing/observing the same physical system – precisely
a change of frames. That means, in the hypothetical example, if one observer
describes a particle with momentum p by the state |p, 1〉, then a Λ-transformed
observer will describe the same particle with a linear combination of the states
|Λp, (1, 2, 3)〉. This means that |Λp, 1〉, |Λp, 2〉, |Λp, 3〉 are all different states of
the same particle. And, if C could be brought in the block diagonal form as
above, then the states |Λp, (1, 2, 3)〉 never mix with the states |Λp, (4, 5)〉, no
matter which Lorentz transformation you use. Therefore, |Λp, (4, 5)〉 have to be
states of a different particle. With this in mind, let us try to decipher as much
as we can about the structure of Cσ′σ. The ensuing discussion will teach us
what is known as the Wigner’s method of induced representation.

To begin with, I shall state, without proof, two properties of proper or-
thochronous Lorentz transformations. The proofs can be found at Weinberg’s
first volume, but this would be a nice exercise for you to try on your own.

Proper orthochronous Lorentz transformations leave the following invariant :

• Norm of a state.

• Algebraic sign37 of a0 if aµ is a time-like 4-vector.

We have been using the mostly negative Minkowski metric. With this signature,
time-like vectors have positive norm. Now, massive particles have p2 = m2 > 0,
massless particles have p2 = 0. Finally, the vacuum has p ≡ (0, 0, 0, 0)

T
.

—————————————————————————————————-
Weinberg uses a notation in which the zeroth component of a 4-vector is writ-

ten at the bottom of the column vector : p =


p1

p2

p3

p0

. We shall also use this

convention for the present discussion.
—————————————————————————————————–

Consider a massive particle, with p2 = m2 > 0. The momentum 4-vector of
the particle has the same norm m2 in all Lorentz frames. In an instantaneous
rest frame of the particle, it has p = (0, 0, 0,M)

T
. Therefore, the sign of p0 stays

positive under every P.O.L.T. So, we have an infinite family of 4-momentum
vectors p, each with p2 = m2 and sgn

(
p0
)
> 0. From this infinite family

of momentum 4-vectors related to each other through proper orthochronous
Lorentz transformations, let us choose one as a standard, and call it k. Having
chosen the standard 4-momentum k, we can make a P.O.L.T act on it to get
an arbitrary 4-momentum p belonging to the same family. In fact, given a
particular p in the family, there are infinitely38 many proper orthochronous

37We shall denote it by sgn
(
a0

)
38Let me explain why or how there are infinitely many Lorentz transformations that take k

to p. Let Λ1 be a Lorentz transformation that takes k to p =
(
p0, ~p

)
. Consider now a rotation
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Lorentz transformations that take k to p. We shall choose one of these Lorentz
transformations as a standard Lorentz transformation and name it L (p). The
conventional choice of standard momenta are listed below :

Category Choice of standard momentum Little group

p2 = m2 > 0; massive particle k =


0
0
0
m

 SO (3)

p2 = 0; massless particle k =


0
0
κ
κ

 ISO (2)

Vacuum k =


0
0
0
0

 SO (3, 1)

The meaning of the third column will be apparent soon. We also have some
conventional choices for the standard Lorentz transformations. We shall quote
them and justify the choices as we go along. Suppose, for now, that we have a
standard momentum k, and a standard Lorentz transformation L (p) that takes
k to p :

pµ = [L (p)]
µ
ν k

ν ; p2 = k2; sgn
(
p0
)

= sgn
(
k0
)

(220)

Also suppose that we have assigned the labels σ for the states with 4-momentum
eigenvalue k. Pick the state |k, σ〉 and make U (L (p)) act on it. Since L (p) is a
Lorentz transformation that takes k to p, therefore equation (217) implies that
U (L (p)) |k, σ〉 has p as its 4-momentum eigenvalue. Since we haven’t decided
on the σ labeling of the states with 4-momentum eigenvalue p yet, we have the
liberty to fix that by the following definition of |p, σ〉 :

|p, σ〉 ≡ N (p)U (L (p)) |k, σ〉 (221)

Equation (221) connects the σ values for the different values of the 4-momentum.
The factor N (p) stands there as a normalization39 factor. Now,

U (Λ) |p, σ〉 = U (Λ)U (L (p)) |k, σ〉.N (p) = N (p)U (ΛL (p)) |k, σ〉

= N (p)U (L (Λp))U−1 (L (Λp))U (ΛL (p)) |k, σ〉

∴ U (Λ) |p, σ〉 = N (p)U (L (Λp))U
(

(L (Λp))
−1

ΛL (p)
)
|k, σ〉 (222)

R by an arbitrary angle θ about the axis pointing along the direction of ~p. Evidently, Rp = p.
Therefore, (RΛ) k = R (Λk) = Rp = p, proving the claim.

39The momentum eigenstates are so defined that 〈k, σ|k′
, σ

′ 〉 = δ
σσ

′ δ3
(
~k − ~k′

)
. This

normalization is not Lorentz invariant. Therefore, the action of U (L (p)) on |k, σ〉 produces
a state that no longer has a unit norm. We multiply U (L (p)) |k, σ〉 with the factor N (p) so
that the product has unit norm, and define that product to be |p, σ〉.
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Focus now on the Lorentz transformation

(L (Λp))
−1

ΛL (p) ≡W (Λ, p) (223)

The action of W (Λ, p) on an arbitrary 4-momentum is not known. But its action

on k is easily found out : W (Λ, p) k =
[
(L (Λp))

−1
ΛL (p)

]
k =

[
(L (Λp))

−1
Λ
]
p =[

L−1 (Λp)
]

(Λp) = k. That is, W = {W (Λ, p)} is the set of Lorentz transforma-
tions that leave the standard 4-momentum k invariant. It’s easy to verify that
W is a group. It is called the little group of k.

Definition : Little group of k is the group of all proper orthochronous Lorentz
transformations that leave k invariant.

Every k comes with a little groupWk of its own. Wk is a subgroup of the entire
P.O.L.T group. That is probably the reason why it is called the little group,
signifying the fact thatWk is a “smaller” set of symmetries. The three standard
4-momenta that will be of our interest are those for the massive particles, the
massless particles and the vacuum respectively. The choices of k for these three
have been supplied already. Their corresponding little groups have also been
tabulated. We shall soon work out the details. Let me first point out an
interesting detail. The standard momentum for massive particles has SO (3) as
its little group. As a consequence, the knowledge of SO (3) is all we need to
treat the quantum theory of a relativistic particle. This significantly cuts down
our effort to find the structure of Cσ′σ for massive particles since we already
know everything there is to know about SO (3).

Let U (W (Λ, p)) be the operator on the Hilbert space carrying out the effect
of W (Λ, p). Since we know that the action of W (Λ, p) on k is to leave it
invariant, therefore

U (W (Λ, p)) |k, σ〉 =
∑
σ′

Dσ′σ (W (Λ, p)) |k, σ
′
〉 (224)

This result is nicer than (218) because it makes the fact obvious that the span
of the states |k, σ〉 for different σ’s carries an irrep of the little group Wk. How
does all this help in determining the action of U (Λ) on |p, σ〉? Equation (222)
implies

U (Λ) |p, σ〉 = N (p)U (L (Λp))U
(

(L (Λp))
−1

ΛL (p)
)
|k, σ〉

= N (p)U (L (Λp))
∑
σ′

Dσ′σ (W (Λ, p)) |k, σ
′
〉

= N (p)
∑
σ′

Dσ′σ (W (Λ, p))U (L (Λp)) |k, σ
′
〉

∴ U (Λ) |p, σ〉 =
N (p)

N (Λp)

∑
σ′

Dσ′σ (W (Λ, p)) |Λp, σ
′
〉 (225)
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Equations (225) and (218) both give the action of U (Λ) on |p, σ〉. Comparing
the two, we get Cσ′σ (Λ, p) in terms of Dσ′σ (W (Λ, p)). Since the D matrix is
that of an irrep of the little group and is easily found out, therefore our problem
is solved.
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8 Week 8

8.1 Lecture 22 : February 29, 2016

Today we shall start off from equation (225). Let me first throw in a fact without

proof : the ratio N(p)
N(Λp) equals

√
(Λp)0

p0 . This is a consequence of N (p) =
√

k0

p0 .

You shall prove it in your next assignment. It basically follows from 〈p|p′〉 =

(2π)
3

2E~pδ
3
(
~p− ~p′

)
= (2π)

2
2p0δ3

(
~p− ~p′

)
, the proof of which you saw in the

QFT course last semester. Hence, the end result of the last lecture was as follows
:

Cσ′σ (Λ, p) =
N (p)

N (Λp)
Dσ′σ (W (Λ, p)) =

√
(Λp)

0

p0
Dσ′σ (W (Λ, p)) (226)

This is the central result of Wigner’s method of induced representations.
We shall now make the somewhat general discussion of the method of induced

representations particular by considering concrete applications.

• Massive particles :
Norm of the 4-momentum of a particle of mass M is M2. We are adopt-

ing Weinberg’s notation – 4-vectors : x =
(
x1, x2, x3, x0

)T
, metric :

diag (−1,−1,−1, 1). Our choice of standard momentum for this case is

k =


0
0
0
M

 (227)

A Lorentz transformation that leaves k invariant cannot involve boosts,
because a boost changes the zeroth component of a 4-vector. Any rotation
in space leaves k invariant. Therefore, the little group of this standard
momentum k is Wk = SO (3). Equation (226) essentially tells us that
how a state changes under a general Lorentz transformation is determined
by how states in the irreps of Wk mix under little group elements. In this
case, the little group is SO (3) and we know all about the irreps of SO (3),
that the states are labeled by j and mj , and how the labels mj mix under
rotations. This is great news, except for the fact that we haven’t exactly
specified L (p) and hence W (Λ, p) = (L (Λp))

−1
ΛL (p). We shall do it

now. Firstly, L (p) is not unique. All we know about it is L (p) k = p.
Let’s see what that tells us about the matrix elements of L (p).

L (p)


0
0
0
M

 =


p1

p2

p3

γM

 (228)
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Also, |~p| = βγM ⇒ |~p|
M = βγ ⇒ ~p

M = |~p|
M p̂ = βγp̂. Therefore,

L (p) =

 βγp̂

γ

 :


0
0
0
M

 7→
 ~p

γM

 (229)

Therefore, the 4th column of L (p) is determined from its action on k. The
first three columns are not completely arbitrary, because L (p) has to be
a Lorentz transformation after all. But there are infinitely many choices
for these three columns. If you find one L (p) that works, you immedi-
ately get infinitely many L

′
(p) = (rotation about p̂)L (p) (any rotation)

that work just as well. Therefore, we shall have to exercise a choice of
the standard Lorentz transformation that we will use for all massive par-
ticles. Notice that, a Lorentz transformation that maps (0, 0, 0,M)

T
to

(0, 0, βγM, γM)
T

is the following boost :

B (|~p|) =


1 0 0 0
0 1 0 0
0 0 γ βγ
0 0 βγ γ

 (230)

This is a boost along the z direction. To obtain a boost along an arbitrary
direction p̂, we shall just have to follow B (|~p|) up with a rotation R (p̂)
that rotates the z-axis onto the p̂ axis. So, we might say that we have
found what we were after :

L (p) = R (p̂)B (|~p|) (231)

However, this is not a unique choice because of two reasons. First off,
we could begin with an arbitrary rotation about an arbitrary axis which
would not change (0, 0, 0,M)

T
at all. We shall indeed use this freedom

and choose the following as our standard Lorentz transformation :

L (p) = R (p̂)B (|~p|)R−1 (p̂) (232)

The first rotation has been chosen to be R−1 (p̂) . This is a choice and
you could have chosen any other rotation just as well. We choose this
because it is customary, and this choice is customary because of a good
reason that will become apparent soon. There is a second reason why
(231) was not unique and that reason still persists. The rotation R (p̂) has
been defined as one that rotates the z-axis onto the p̂ direction. There are
infinitely many rotations that do that. If you come up with one rotation
that does the job, we can follow it up with an arbitrary rotation about the
p̂ axis and the resultant L (p) will have the same action on (0, 0, 0,M)

T
.

So, we shall have to choose one R (p̂). Surprisingly, we shall see that any
choice of R (p̂) gives rise to the same L (p)! Now, notice that (232) is a
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symmetric choice for L (p). The rotation R (p̂) is a 4 × 4 matrix of the

form

 R(3) (p̂)
0
0
0

0 0 0 1

, where R(3) (p̂) is an arbitrary rotation that

rotates ê3 =
(

0 0 1
)T

, the unit vector along the z-axis, to p̂.

R(3) (p̂) ê3 = p̂ (233)

Therefore,

L (p) =

 R(3) (p̂)
0
0
0

0 0 0 1




1 0 0
0 1 0
0 0 γ

γβê3

γβêT3 γ


 RT(3) (p̂)

0
0
0

0 0 0 1


(234)

Now we use the following :1 0 0
0 1 0
0 0 γ

 = I3 + (γ − 1) ê3ê
T
3 (235)

Therefore,

L (p) =

[
R(3) (p̂) 0

0 1

] [
I3 + (γ − 1) ê3ê

T
3 γβê3

γβêT3 γ

] [
RT(3) (p̂) 0

0 1

]

∴ L (p) =

[
I3 + (γ − 1) p̂p̂T γβp̂

γβp̂T γ

]
(236)

The final result shows us that the choice of R(3) (p̂) is immaterial – any
choice gives rise to the same L (p). Comparing this to (229) we see that
the 4th columns match, which is no surprise. So, our choice/convention
of L (p) = R (p̂)B (|~p|)R−1 (p̂) yields

L (p)
0
0 = γ

L (p)
0
i = βγp̂i

L (p)
i
j = δij + (γ − 1) p̂ip̂j

(237)

Having fixed the standard Lorentz transformation, we now have to com-
pute W (Λ, p) = L−1 (Λp) ΛL (p). Let me stress here that a rotation is
a Lorentz transformation. We already know that the little group for the
standard k chosen for the massive particles is SO (3). An SO (3) matrix
is, by definition, 3 × 3. But elements of the little group of k have to be
4 × 4, since they are Lorentz transformations. Therefore, when we say
that the little group is SO (3), we really mean that it is the group of 4× 4
matrices which have the following form

R =

[
R ∈ SO (3) 0

0 1

]
(238)
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Consider Λ = R.

W (Λ, p) = W (R, p) = L−1 (Rp)RL (p) (239)

Now, L (p) = R (p̂)B (|~p|)R−1 (p̂) implies, L (Rp) = R (Rp̂)B (|R~p|)R−1 (Rp̂)
and L−1 (Rp) = R (Rp̂)B−1 (|R~p|)R−1 (Rp̂). Furthermore, |R~p| = |~p|.
Hence,

W (Rp) =
[
R (Rp̂)B−1 (|~p|)R−1 (Rp̂)

]
R
[
R (p̂)B (|~p|)R−1 (p̂)

]
(240)

There are two boosts in the above expression. If we could somehow
commute B−1 (|~p|) across R−1 (Rp̂)RR (p̂), then the two boosts would
negate each other. Let us investigate the action of R−1 (Rp̂)RR (p̂) on
ê3.

[
R−1 (Rp̂)RR (p̂)

]
ê3 =

[
R−1 (Rp̂)R

]
p̂ =

[
R−1 (Rp̂)

]
(Rp̂) = ê3.

This means that R−1 (Rp̂)RR (p̂) is a rotation that leaves ê3 unchanged.
Hence, it must be a rotation about ê3. And, B (|~p|) is a boost along
ê3. Therefore, these two must commute. Therefore, B−1 (|~p|) can in-
deed be commuted across R−1 (Rp̂)RR (p̂). We end up with W (Rp) =[
R (Rp̂)R−1 (Rp̂)

]
R
[
R (p̂)R−1 (p̂)

]
. Clearly,

W (R, p) = R (241)

The end result is that the little group element W (R, p) corresponding to
the Lorentz transformation R (a rotation) is R itself. This is a conse-
quence of the choice of L (p) we made in (232). Had we not chosen the
standard Lorentz transformation L (p) to be symmetric by starting with
the rotation R−1 (p̂), this nice result would not have followed. This is
exactly the reason why we chose such an L (p). Keep in mind that (241)
holds for rotations only. For a Lorentz transformation Λ which is not a
rotation, W (Λ, p) will not be equal to Λ. So, our choice of L (p) favors
rotations over other Lorentz transformations in that W ’s for R’s equal
R’s themselves. However, this is not an unfair partiality because rota-
tions have a special significance for massive particles. They form the little
group of the standard k chosen for massive particles.

Let me mention an important point here. We said before that if there are
some one particle states which mix under Lorentz transformations then those
states must be the states of the same particle. Because, otherwise, merely going
to a different Lorentz frame would change the identity of a particle, which is
absurd. This is impeccable logic. However, we tend to extend this argument
to also claim that states which do not mix under any Lorentz transformation
belong to different particles. Is this claim necessarily true? Let me mention a
counter-example. Photons are massless particles. There are two independent
polarization states of photons, left and right circularly polarized states. These
states do not mix under any boosts or rotations whatsoever. Does that mean
that these two states are basically of two different particles and there are really
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two different photons in the picture? The answer is a resounding no! Because,
boosts and rotations are not the only symmetry transformations of photons.
Electromagnetism also has parity symmetry which is a Lorentz transformation
that belongs outside the P.O.L.T group. And parity mixes these two polarization
states. A left circularly polarized photon would be observed to be right circularly
polarized from a parity reversed frame. Since a change of frame cannot alter
the identity of a particle, therefore we say that both the states are the states
of the same particle – the photon. The lesson is the following. If S is the set
of ALL the symmetry transformations of a one particle system and no element
of S mixes the states |α〉 and |β〉, then there is no reason to believe that these
two states are of the same particle. In such a situation, we conclude that these
are states of two different particles and try to look for some intrinsic quantities
(e.g., mass, spin etc.) with respect to which they differ.
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8.2 Lecture 23 : March 2, 2016

The idea of our present discussion is the following. If we know what the little
group does to states then we know what the entire P.O.L.T group does to
states. So, we look for the action of the little group elements. In the last class,
we finished discussing the choice of L (p) for massive particles that conveniently
results in W (R, p) = R where R ∈ SO (3), the little group for the standard

momentum k =
(
0 0 0 M

)T
chosen for massive particles. Today we shall

take up the vacuum and the massless particles.

• The Vacuum :
The standard momentum vector is

k =


0
0
0
0

 (242)

and the little group is Wk = SO (3, 1), the entire P.O.L.T group. The
prescription of looking for irreps of the little group does not help because
the little group is by no means littler than the entire group. But wait! The
point of studying the little group was that its action on the states would
determine the action of an arbitrary U (Λ) on the states. We already know
what an arbitrary U (Λ) does to the vacuum states.

Λ


0
0
0
0

 =


0
0
0
0

 =⇒ U (Λ) |vacuum〉 = |vacuum〉 (243)

So we are done here. The span of the vacuum state carries the trivial
representation of the Lorentz group.

• Massless particles :
The standard momentum vector is

k =


0
0
κ
κ

 (244)

... to be continued...
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